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APPFL+MONAI

MONAI FL module provides a MonaiAlgo class, which provides train, evaluate, and 
get_weights functions to enable federated learning by leveraging a collection of medical 

imaging models available in MONAI bundles.
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➢ Heterogenous Data [1]

➢ Data Reconstruction [3]
➢ Malicious Attack [2]

➢ Heterogenous Compute and Infrastructure

➢ Cumbersome Setup
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➢ Heterogenous Data

Solution 1:

Utilize server-side momentum or other 

optimizations to avoid drastic changes in global 

model. (for example, FedAvgM [4], FedAdam, 

FedAdagrad, FedYogi [5], etc.)

𝜔 ← 𝜔 − ∆𝜔 where 

∆𝜔 = Σ𝑝𝑖∆𝜔𝑗

Traditional FedAvg

𝑣 ← 𝛽𝑣 + (1 − 𝛽)∆𝜔
𝜔 ← 𝜔 − 𝑣 

and ∆𝜔 = Σ𝑝𝑖∆𝜔𝑗

FedAvg with momentum
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➢ Heterogenous Data

Solution 2:

Leverage proximal term or variance reduction 

correction term in client local training to prevent 

local training from drifting too far way from the 

global model. (for example: SCAFFOLD [6], 

FedProx [7], etc.)

 FedProx

 SCAFFOLD
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➢ Heterogenous Data

Solution 3:

Inspect data quality before FL experiments to 

exclude sites with bad data or exclude bad data 

within each site [8]. (At least, this can provide 

some insights to reason about final model 

performance.) 
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➢ Heterogenous Compute and Infrastructure

• As the computing capabilities of client machines 

could have large variance, clients may take 
significantly different amount of time to finish one 
local training round.

• Synchronous FL algorithms, where the server waits 

for all clients to send the local models back, suffer 
from resource wastage.

Server
Client 2Client 1

T=00:15:00

T=01:00:00

T=01:00:00

T=01:00:00

Lots of 

resources are 
wasted for 

powerful clients.

Resource wastage in synchronous FL.
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➢ Heterogenous Compute and Infrastructure

Asynchronous FL – which updates global 

model immediately once receiving local 

model from each client – can improve 

efficiency for FL in heterogeneous 

computing environments. (For example, 

FedAsync [9], FedBuff [10], FedCompass 

[11], etc)

Server

Clients

Underlying 
Computing 
Power

Assigned 
Training
Steps

100 
steps

40 
steps

20 
steps

80 
steps

FedCompass Illustration

Assigning local training steps proportional to client’s computing power.
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➢ Malicious Attack

• Some clients may try to attack the FL training 

process by sending poisoned updates for 

aggregation.

• Algorithmic solutions include using a small 

central validation set and decide whether to 

drop certain client updates [2].

• System level, it is important to build a secure 

and trusted federation with user authentication 

systems [12].
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➢ Data Reconstruction

• Data reconstruction is another type of attack to FL.

• FL itself is not privacy preserving. The training data can be 

reversely constructed from model gradients.

• Differential privacy (DP), which adds some noise to model 

parameters, can significantly increase the difficulty of 

reconstruction [13].

Certain privacy-preserving FL algorithms (e.g. IIADMM) have less performance loss with DP [14].
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➢ Cumbersome Setup

• Due to the distributed nature of federated learning, setting up 

FL experiments can be tedious for domain experts.

• Coordination of distributed training can be tedious as well, 

especially for sites using scheduling systems.

• Some client devices (e.g., compute nodes of some HPC) 

may not even have direct internet access.

• More efficient data transmission is needed as model gets 

larger.

• And so on…

APPFL alleviates those issues by supporting a versatile communication stack [12].
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Manuscript [12] Open-source Code

Framework Design Description 

➢ Framework overview
➢ Addressed challenges
➢ Evaluations

➢ Additional case studies
➢ …

Source code on Github

➢ Fully open-source
➢ Welcome issues
➢ Welcome contributions

➢ …

https://arxiv.org/pdf/2409.11585
https://github.com/APPFL/APPFL
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Documentation
service.appfl.ai

service.appfl.ai

Detailed Documentation 

➢ Installation
➢ Launching FL experiments
➢ Advanced Developer Guides

➢ …

APPFL-based Service Platform 

➢ Fully based on APPFL
➢ User-friendly for domain experts 
➢ Comprehensive report generation

➢ …

https://appfl.ai/en/latest/
https://appflx.link/
https://appflx.link/
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APPFL+MONAI

MONAI FL module provides a MonaiAlgo class, which provides train, evaluate, and 
get_weights functions to enable federated learning by leveraging a collection of medical 

imaging models available in MONAI bundles.

MONAI Model Zoos

https://monai.io/model-zoo.html
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• We leverage the MonaiAlgo class to define a 
MonaiTrainer within APPFL’s Trainer module to 

train models using the MONAI bundles.
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• Thanks to the awesome interfaces provided by the 
MonaiAlgo, it only takes ~100 lines of code to use all 

MONAI bundles in APPFL.

• All MONAI bundles can utilize all APPFL’s features 

and solutions to various FL challenges to federate 
the model training.
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https://appfl.ai/en/latest/tutorials/examples_monai.html 

https://appfl.ai/en/latest/tutorials/examples_monai.html
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• https://github.com/APPFL/APPFL

• Give us a star  if you think our framework 
could be useful for your future research 

• Join our Discord channel for further discussions

https://github.com/APPFL/APPF
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