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APPFL+MONAI

MONAI FL module provides a MonaiAlgo class, which provides train, evaluate, and
get_weights functions to enable federated learning by leveraging a collection of medical
imaging models available in MONAI bundles.

MONAI Bundle Reference Implementations

class monai.fl.client.MonaiAlgo (bundle_root, local_epochs=1,
send_weight_diff=True, config_train_filename='configs/train.json',
train_kwargs=None, config_evaluate_filename='default', eval_kwargs=None,
config_filters_filename=None, disable_ckpt_loading=True,
best_model_filepath="'models/model.pt"',
final_model_filepath="'models/model_final.pt', save_dict_key="model',
data_stats_transform_list=None, eval_workflow_name='train',
train_workflow=None, eval_workflow=None) [source]

Implementation of ClientAlgo to allow federated learning with MONAI bundle configurations.
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature
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Solution 1:

Utilize server-side momentum or other
optimizations to avoid drastic changes in global
model. (for example, FedAvgM [4], FedAdam,

s -7 FedAdagrad, FedYogi [5], etc.)
> Heterogenous Data
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature
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Solution 2:

Client 1

Leverage proximal term or variance reduction
correction term in client local training to prevent
local training from drifting too far way from the

ety - e T global model. (for example: SCAFFOLD [6],
> Heterogenous Data FedProx [7], etc.)
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CHALLENGES IN FL
Various Challenges of Federated Learning Due to its Distributed Nature

Data Readiness Report

Client ID class_imbalance sample_size num_classes data_shape data_range overall_sparsity class_distribution outlier_proportion
Zilinghan Li - AWS 017 172 2 (172,13) {min": -2.42, 'max’: 6.48} 0.0 {0.0: 107, 1.0: 65} 0.04
Kaveen Hiniduma - OSU inf 30 1 (30, 13) {min" -2.95, 'max'; 5,29} 0.08 {1.0: 30} 0.06
Ravi Madduri - Argonne 0.06 199 2 (199, 13) {'min"; -3.61, 'max" 9.9} 0.0 {0.0: 108, 1.0: 91} 0.03
Shilan He - NCSA 0.39 85 2 (85, 13) {min"; -6.4, 'max": 4.47} 0.0 {1.0: 66, 0.0: 19} 0.04

Plots for Client ID: Zilinghan Li - AWS
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature

Ll « Asthe computing capabilities of client machines
| 3 could have large variance, clients may take
significantly different amount of time to finish one
local training round.

Google Cloud

| » Synchronous FL algorithms, where the server waits
£ for all clients to send the local models back, suffer

from resource wastage.
> Heterogenous Compute and Infrastructure 9
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el T=01:00:00 < T=01:00:00 wasted for
erver == .
Client 1 Client 2 powerful clients.

Resource wastage in synchronous FL.
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature
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Asynchronous FL — which updates global Computing 57 59 757 55
model immediately once receiving local Power 94 55
qu.el from each. client — can improve g7 Sf?FedCompass llustration
efficiency for FL in heterogeneous
computing environments. (For example, Assigning local training steps proportional to client’s computing power.
FedAsync [9], FedBuff [10], FedCompass
[11], etc)
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature

« Some clients may try to attack the FL training

M Federated Average g process by sending poisoned updates for
Global model Q Poisoned model aggregation.
I Update Poisoned update Update I . . . . .
| tant Train ] — Algorithmic solutions include using a small
| Labelo Label 7 Label9 | | central validation set and decide whether to
INEE (q 7] | drop certain client updates [2].
| a1 ____ Atacker _____ Parioigantn |

« System level, it is important to build a secure
> Malicious Attack and trusted federation with user authentication
systems [12].
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature
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Data reconstruction is another type of attack to FL.

* FL itself is not privacy preserving. The training data can be
reversely constructed from model gradients.
« Differential privacy (DP), which adds some noise to model

parameters, can significantly increase the difficulty of

> Data Reconstruction reconstruction [13].
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CHALLENGES IN FL

Various Challenges of Federated Learning Due to its Distributed Nature

» Due to the distributed nature of federated learning, setting up
FL experiments can be tedious for domain experts.

« Coordination of distributed training can be tedious as well,
especially for sites using scheduling systems.

« Some client devices (e.g., compute nodes of some HPC)
may not even have direct internet access.

More efficient data transmission is needed as model gets

> Cumbersome Setup
larger.

e Andsoon...

APPFL alleviates those issues by supporting a versatile communication stack [12].
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APPFL FRAMEWORK DESIGN
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APPFL FRAMEWORK
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Abstract—Federated learning (FL) is a machine  Depending on the amount, capability, and availability of client [ - cama | e
learning paradigm enabling collaborative model training while devices, FL is broadly categorized into two types, cross-device - - T feerse
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APPFL, an =l and i to develop more complex ML models with Tioks

Manuscri pt [12] Open-source Code

Framework Design Description 5 Source code on Github ()
Framework overview » Fully open-source
Addressed challenges » Welcome issues
Evaluations » Welcome contributions
Additional case studies >
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https://arxiv.org/pdf/2409.11585
https://github.com/APPFL/APPFL

APPFL FRAMEWORK

Ay APPFL TE
APPFL APPFL, Advanced Privacy-Preserving Federated Leaming, is an open-source software framework that
. allows research communities to implement, test, and validate various ideas related to privacy-
documentation preserving federated learning (FL), and deploy real FL experiments safely and easily among
distributed clients to train ML models. With this framework, developers andjor users can easily
Q. Search
« Train any user-defined machine learning model on decentralized data with optional differential
privacy and client authentication,
Installati
netstaten « Simulate various synchronous, asynchranous and PPFL algorintms on high-performance
Tutorials o computing (HPC) architecture with MPI,
User Guide v
Community
Contributing
Publications
Changelog

+ Implement customizations in a plug-and-play manner for all aspects of FL, including aggregation
algorithms, server scheduling strategies, and client local trainers.

Technical Components

APPFL is primarily composed of the following six technical compenents: Aggregator, Scheduler,

Trainer, Privacy, Communicator, and Compressor, all with easy interface for user customizations.

Documentation
>

Detailed Documentation
Installation
>

Launching FL experiments
» Advanced Developer Guides
> ...
(@ ENER
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& APPFLx: Building Al Models For Science

DASHBOARD DOCUMENTATION ZILINGHAN2@GLOBUSID.ORG

Building Al Models

For Science

Prwao,vrPre-"erwng Federated Lez
Susta

able and Trustworth:

ing for Science: Building
ndation Models

GET STARTED

Leam how to start an FL experiment using APPFLX.

service.appfl.ai

APPFL-based Service Platform &
Fully based on APPFL

VVVY

User-friendly for domain experts

Comprehensive report generation
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https://appfl.ai/en/latest/
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APPFL+MONAI

MONAI FL module provides a MonaiAlgo class, which provides train, evaluate, and
get_weights functions to enable federated learning by leveraging a collection of medical
imaging models available in MONAI bundles.

MONAI Bundle Reference Implementations

class monai.fl.client.MonaiAlgo (bundle_root, local_epochs=1,
send_weight_diff=True, config_train_filename='configs/train.json',
train_kwargs=None, config_evaluate_filename='default', eval_kwargs=None,
config_filters_filename=None, disable_ckpt_loading=True,
best_model_filepath="'models/model.pt"',
final_model_filepath="'models/model_final.pt', save_dict_key="model',
data_stats_transform_list=None, eval_workflow_name='train',
train_workflow=None, eval_workflow=None) [source]

Implementation of ClientAlgo to allow federated learning with MONAI bundle configurations.
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APPFL+MONAI

MONAI FL module provides a MonaiAlgo class, which provides train, evaluate, and
get_weights functions to enable federated learning by leveraging a collection of medical
iImaging models available in MONAI bundles.

All Models

Brats mri axial slices generative diffusion
MONAI team

A generative madel for creating 2D brain MRI axial slices from
Gaussian noise based on BraTS dataset

—
([ Model Details \l

AN

Breast density classification

Center for Augmented Intelligence in Imaging, Mayo
Clinic Florida

A pre-trained model for classifying breast images

(mammograms)

l/ Model Details \I

AN

Lung nodule ct detection
MONAI team
A pre-trained model for volumetric (3D) detection of the lung

lesion from CT image on LUNA16 dataset

IC Madel Detm\s)

Brats mri generative diffusion
MONAI team

A generative model for creating 3D brain MRI from Gaussian

noise based on BraTS dataset
o
Model Details |

Endoscopic inbody classification
NVIDIA DLMED team

A pre-trained binary classification model far endoscopic
inbody classification task

(Madel Details \)
-/

Mednist gan
MONAI Team

This example of a GAN generator produces hand xray images

like those in the MedNIST dataset
' ’
[ Model Details
. —

Brats mri segmentation
MONAI team

A pre-trained model for volumetric (3D) segmentation of brain
tumor subregions from multimodal MRIs based on BraTS 2018

data
Model Details

Endoscopic tool segmentation
NVIDIA DLMED team

A pre-trained binary segmentation model for endoscopic tool
segmentation

4 .
((_ Mods! Details

Mednist reg
MONAI team

This is an example of a ResNet and spatial transformer for

hand xray image registration
' .
[ Model Details
. —

MONAI Model Zoos
https://monai.io/model-zoo.html
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APPFL+MONAI

Server Agent | Server Config Comm Config Client Agent | Client Config -
RESPONSE REQUEST . L4 .
Task

controller | lk=mm-----

i I

Privacy Privacy
Aggregator Data Trainer Inspector
connector

Other 7 Other

Other task handlers  [[]--2277777 Compressor [‘”777777T1] Other task requesters

class MonaiTrainer(BaseTrainer):
def _init__(...):

Scheduler

Communicator

self.monai_algo = MonaiAlgo(...)
self.monai_algo.initialize(...)

* We leverage the MonaiAlgo class to define a def get_parameters(self):

MonaiTrainer within APPFL’'s Trainer module to it monai 290, get_weights(es.)
. . . 1 . _wel e

train models using the MONAI bundles. ST B - S —

» Thanks to the awesome interfaces provided by the e R T
MonaiAlgo, it only takes ~100 lines of code to use all o
MONAI bundles in APPFL. self.monai_algo.evaluate(...)

self.monai_algo.train(...)
«  AllMONAI bundles can utilize all APPFL’s features self.monat_algo.evaluate...)

and solutions to various FL challenges to federate
the model training.

Ar
a
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APPFL+MONAI

Example: Running APPFL using
MONAI Bundle o

appfl: 8 [2025-01-19 04:04:05,174 server]: Logging to ./output/result_Server_2025-01-19-04-04-05.txt

+ appfl: 8 [2025-01-19 04:07:00,973 server]: Received GetConfiguration request from client Clientl
appfl: [2025-01-19 04:07:39,732 server]: Received UpdateGlobalModel request from client Clientl
APPFL x \4 w A appfl: [2025-01-19 04:07:39,741 server]: Received the following meta data from Clientl:

{'round': 1,

'val_accuracy': 0.9534343488656791,
‘val_accuracy_before_train': 0.7170387863353559,
‘val_mean_dice': 0.06496836245059967,

‘val_mean_dice_before_train': 0.03413229435682297}
how to use MONAI Bundle to do 3D spleen CT segmentation using gRPC with two clients. appfl: [2025-01-19 04:08:02,911 server]: Received

This tutorial describes how to run federated learning experiments via APPFL using MONAI Bundles to
leverage a collection of medical imaging models available in MONAI model zoo. This examples shows

GetConfiguration request from client Client2
appfl: @ [2025-01-19 04:08:44,316 server]: Received UpdateGlobalModel request from client Client2

/' Note appfl: [2025-01-19 04:08:44,319 server]: Received the following meta data from Client2:
Acknowledgement: We extend our gratitude to the MONAI and NVFlare teams for their invaluable support and { ‘round': 1, .
information throughout this tutorial. Specifically, this tutorial refers to the NVFlare-MONAI integration tutorial. val_accuracy': 0.9544978111412874,

‘val_accuracy_before_train': 0.7170388106327907,
‘val_mean_dice': 0.06501330435276031,

7 Note 'val_mean_dice_before_train': 0.034132301807403564}
This tutorial is the beta version of the integration of MONAI Bundle with APPFL. The integration is still under active appfl: @ [2025-01-19 04:09:01,715 server]: Received UpdateGlobalModel request from client Client2
development. appfl: 8 [2025-01-19 04:09:01,717 server]: Received the following meta data from Client2:
{'round': 2
'val_accuracy': 0.9604373494530939,
H 'val_accuracy_before_train': 0.9539599266781169,
InSta"atlon ‘val_mean_dice': 0.06739335507154465,
User can install appfl and monai packages from appfl's source code by running the following ‘val_mean_dice_before_train': 0.06500281393527985}
commands:

git clone ——single-branch —-branch main https://github.com/APPFL/APPFL.git
cd APPFL
pip install -e

. [monai,examples]"

managed by UChicago Argonne, LLC.
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https://appfl.ai/en/latest/tutorials/examples_monai.html

USEFUL QR CODES

» https://github.com/APPFL/APPFEL
« Give us a star Y if you think our framework
could be useful for your future research ik

Join our Discord channel for further discussions

7, U5 DEPARTMENT OF _ Argonne National Labaratory is a
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