
A YEAR IN APPFL SOFTWARE

DEVELOPMENT

erhtj ht yhy

ZILINGHAN LI

Machine Learning Engineer

Data Science and Learning Division,

Argonne National Laboratory

zilinghan.li@anl.gov

AI4S

AI4S Quarterly Meeting,

Argonne National Laboratory, Lemont, IL

2025/02/10

🫕 APPETIZERS
APPFL Repo Statistics

2

>300 commits & 100,000 lines of changes & 11 releases

Gained 100 stars

31 Issues Closed

65 Pull Requests Merged

>10 Code Contributors

 IMPORTANT MILESTONE
Release of a stable version 1.x with a new design

3

Client Agent

Privacy

Trainer

Other task requesters

Data

Server Agent

Other task handlers

Privacy

Aggregator S
c
h

e
d

u
le

r

REQUES
TAggregate

REQUES
TOther

RESPONSE

Aggregate

RESPONSE

Other C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

Server Config Client Config

Inspector

 COMPONENT BREAKDOWN
Server Agent

4

Server Agent

Other task handlers

Privacy

Aggregator S
c
h

e
d

u
le

r

Server Config

 COMPONENT BREAKDOWN
Client Agent

5

Client Agent

Privacy

Trainer

Other task requesters

Data

Client Config

Inspector

Most of the attributes in client

configurations are supposed to

be the same for all clients, so

we set those shared attributes

in the server configuration and

shared them with all clients at

the beginning of FL

experiments to simplify the

configuration process.

 COMPONENT BREAKDOWN
Communicator – Task Controller

6

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Communication protocols

for exchanging task signals

Client-driven (request-

response model)

1 Perform local training
2 Request global aggregation
3 Perform global aggregation
4 Send aggregated model

4 2

1 1

2

3

4

……

Client-driven communication

 Client has more autonomy for the FL experiments.

 COMPONENT BREAKDOWN
Communicator – Task Controller

7

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Communication protocols

for exchanging task signals

Client-driven (request-

response model)

Server-driven (server-

initiated communication)
1 Send local training task
2 Perform local training
3 Send locally trained model
4 Perform global aggregation

1 1

2 2

3

4

3

……

Server-driven communication

 Easier Experiment

coordination.

 COMPONENT BREAKDOWN
Communicator – Task Controller

8

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Communication protocols

for exchanging task signals

Client-driven (request-

response model)

Server-driven (server-

initiated communication)
Globus Compute

[Prototype]

 COMPONENT BREAKDOWN
Communicator – Task Controller

9

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Communication protocols

for exchanging task signals

Client-driven (request-

response model)

Server-driven (server-

initiated communication)
Globus Compute

[Prototype]
Why do we support these many protocols?

Each protocol has its own pros and cons...

MPI: Great for simulation, but mostly just simulation

gRPC: Easy to use, but might not work on compute node with direct network access (e.g.,
does not work on Polaris)

Globus Compute: Easy coordination, does not require direct network access, but has size
limitation, and weak support for cloud computes.

Ray: Similar pros as Globus Compute, good support for cloud, but also has size limitations

 COMPONENT BREAKDOWN
Communicator – Task Controller

10

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Communication protocols

for exchanging task signals

Client-driven (request-

response model)

Server-driven (server-

initiated communication)
Globus Compute

[Prototype]
Something in plan is:

Client-driven can be easily converted to server-driven… (as long as client is okay with it)

i.e., client send request: let me know what do you want me to do”.

It is possible that different protocols can be integrated into one abstract
communication (a server-driven one), and the server can interact with clients

with hybrid communication protocols.

E.g.: Some local clients using MPI, some clients on PCs using gRPC, some clients on HPC
using Globus Compute, and other clients on cloud using Ray…

 COMPONENT BREAKDOWN
Communicator – Data Connector

11

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

🛜 Optional ways to

communication large data

Endpoint

 COMPONENT BREAKDOWN
Communicator – Data Connector

12

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor

 Optional ways to

communication large data

Endpoint

Potential benefits provided by these additional data connectors

Bypass data transmission limits for certain protocols

Leverage faster data transmission methods

Checkpointing model parameters

 COMPONENT BREAKDOWN
Communicator - Compressor

13

C
o
m

m
u

n
ic

a
to

r Task

controller

Data

connector

Comm Config

Compressor Lossy/Lossless data

compression methods

 COMPONENT BREAKDOWN
Communicator - Compressor

14

 HOW TO USE APPFL

Longer Answer: https://appfl.ai/en/latest/tutorials/firstrun.html

Short Answer: appfl.ai

15

User needs to prepare a server configuration file, and client configuration files.

We also provider example runners for different communication protocols in examples folder,
and we are planning providing launchers for all communication protocols.

 ANOTHER USEFUL FEATURE

16

wanb

 SOME USEFUL QR CODES

17

THANK YOU

	Slide 1: A year in appfl software development
	Slide 2: 🫕 appetizers
	Slide 3: 🚏 Important milestone
	Slide 4: 🔍 Component breakdown
	Slide 5: 🔍 Component breakdown
	Slide 6: 🔍 Component breakdown
	Slide 7: 🔍 Component breakdown
	Slide 8: 🔍 Component breakdown
	Slide 9: 🔍 Component breakdown
	Slide 10: 🔍 Component breakdown
	Slide 11: 🔍 Component breakdown
	Slide 12: 🔍 Component breakdown
	Slide 13: 🔍 Component breakdown
	Slide 14: 🔍 Component breakdown
	Slide 15: 📄 How to use appfl
	Slide 16: 🔌 another useful feature
	Slide 17: 💡 Some useful qr codes
	Slide 18

