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Abstract. The growing volume of high-resolution Whole Slide Images
in digital histopathology poses significant storage, transmission, and com-
putational efficiency challenges. Standard compression methods, such as
JPEG, reduce file sizes but often fail to preserve fine-grained phenotypic
details critical for downstream tasks. In this work, we repurpose autoen-
coders (AEs) designed for Latent Diffusion Models as an efficient learned
compression framework for pathology images. We systematically bench-
mark three AE models with varying compression levels and evaluate their
reconstruction ability using pathology foundation models. We introduce
a fine-tuning strategy to further enhance reconstruction fidelity that op-
timizes a pathology-specific learned perceptual metric. We validate our
approach on downstream tasks, including segmentation, patch classifica-
tion, and multiple instance learning, showing that replacing images with
AE-compressed reconstructions leads to minimal performance degrada-
tion. Additionally, we propose a K-means clustering-based quantization
method for AE latents, improving storage efficiency while maintaining
reconstruction quality. We provide the weights of the fine-tuned autoen-
coders at this link.

Keywords: Image compression · Histopathology · Autoencoders.

1 Introduction

With the increasing digitization of histopathology, large repositories of Whole
Slide Images (WSIs), such as TCGA [3], have been invaluable for the devel-
opment of large-scale machine learning models [5,20,8]. However, the size of
high-resolution pathology images presents a major bottleneck in storage, trans-
mission, and computational efficiency. A large pathology center produces over
1 million digital slides per year [22], which translates to petabytes of storage.
Long-term retention of these slides, even in deep archival storage, could cost up
to $100,000 per year. As the volume of pathology data grows, developing effi-
cient compression techniques that reduce storage requirements while preserving
information relevant for AI model ‘consumption’ remains a key issue.

Looking for ways to reduce image size, generative diffusion models [14] have
employed autoencoders (AEs) for efficient high-resolution image synthesis. The
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Fig. 1. Examples of image reconstruction using JPEG, the vanilla DC-AE [4] and
fine-tuned DC-AE. JPEG at quality 10, with a comparable file size to DC-AE, in-
troduces severe compression artifacts, including deformed nuclei and blocky artifacts
(highlighted in yellow and teal). Vanilla DC-AE fails to retain certain cell structures
(green), which are largely recovered through our fine-tuning strategy.

Latent Diffusion Model (LDM) framework [21] introduced a trained autoencoder
that first compresses images into a lower-dimensional latent representation be-
fore applying the diffusion model. These autoencoders are designed to maintain
high reconstruction fidelity while preserving spatial locality and ensuring gener-
alizability. While originally optimized for generative modeling, they are equally
well-suited for image compression [23,11], making pre-trained LDM autoencoders
a promising choice across diverse image domains and sizes.

In this work, we repurpose LDM autoencoders as efficient image compression
models for histopathology. Conventional compression methods, such as JPEG,
can significantly reduce image sizes but struggle to preserve the fine-grained
pathology features critical for downstream tasks when aggressively compressing
[6]. By leveraging the learned representations of LDM autoencoders, we achieve
high compression rates while maintaining the essential pathology details. As
shown in Fig. 1, heavy JPEG compression leads to substantial artifacts, whereas
comparable compression with the DC-AE autoencoder model gives coherent re-
constructions.

We systematically benchmark three AEs — Stable Diffusion 1.5 (SD-1.5)
[21], Stable Diffusion 3 (SD-3) [7], and Deep Compression Autoencoder (DC-
AE-f32) [4] – each offering different compression rates. We assess the perceptual
similarity between original and reconstructed images using pathology foundation
models [5,9,25], finding that existing AEs perform surprisingly well (Fig.2 left).
To further improve the AE reconstructions, we propose a fine-tuning strategy
that optimizes the decoder for a pathology-specific learned perceptual metric.
This fine-tuning strategy further aligns pathology-specific features between the
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Fig. 2. Left: Pre-trained autoencoders outperform JPEG in reconstruction fidelity,
further improved by fine-tuning with a pathology-specific perceptual loss. Right: Using
fine-tuned AE-compressed reconstructions results in minimal performance degradation.
The width of each bar denotes the relative sizes of the compressed representation.

reconstructions and the original without altering the desirable properties (gen-
eralizability, locality) of the autoencoder.

Beyond perceptual similarity, we validate our compression pipeline on mul-
tiple downstream tasks, including segmentation, patch and multiple instance
learning classification. We show that replacing raw images with AE-compressed
reconstructions results in minimal performance degradation, demonstrating the
practical viability of our approach (Fig.2 right). Finally, we introduce a K-means
clustering-based quantization for the AE latents that considers the unique char-
acteristics of the latent distribution. By mapping the continuous latent represen-
tations to a fixed set of discrete values, we further reduce storage while preserv-
ing high reconstruction fidelity, outperforming static 8-bit (int8) rounding-based
quantization, which introduces artifacts and degrades image quality.

Our contributions are as follows

– We repurpose LDM autoencoders for pathology image compression, demon-
strating their ability to achieve high compression rates while preserving es-
sential phenotypical details.

– We benchmark three AEs across multiple compression rates and evaluate
their performance using pathology foundation models.

– We introduce a fine-tuning strategy to enhance reconstruction fidelity by
aligning AE latents with a pathology-specific learned perceptual metric.

– We enhance storage efficiency with a K-means clustering-based quantiza-
tion for AE latents, outperforming static int8 quantization, while preserving
reconstruction fidelity.

2 Related Work

Autoencoders for compression. Using autoencoders for data compression
has been extensively studied with previous works showing that learned compres-
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sion schemes can outperform standard compression algorithms [24,2]. However,
only recently have autoencoders trained on large-scale datasets, such as those in
LDMs, been explored for image compression.

LDM autoencoders. The autoencoders used in LDMs embed the images
into a structured, 2D latent space that downscales the image size. The AEs are
trained with reconstruction, perceptual [28] and patch-based adversarial losses
[16] to ensure the high fidelity of the outputs. To constrain the learned latent
space, Stable Diffusion [21] employs KL regularization [18] that centers the latent
embeddings around zero and imposes unit variance. In DC-AE [4] there is no
explicit regularization on the learned latent space, but it still maintains similar
properties to the latent spaces learned by the SD AEs.

Image compression in digital pathology. The current go-to approach
for image compression in digital pathology is JPEG [12]. Previous attempts
at learned compression for pathology images have also used autoencoder models
[23,11] with recent works proposing domain-specific decompositions for increased
efficiency [10]. However, all existing learning-based compression schemes fail to
generalize outside the training data distribution [12]. In contrast, the LDM au-
toencoders have been designed and trained to work with web images, allowing
them to be used in a wider array of settings.

3 Pathology image compression with AEs

3.1 Compression ratio

The starting point is the comparison of storage requirements and reconstruc-
tion fidelity between JPEG compression, with different quality settings, and the
learned autoencoder compression schemes. We utilize 1000 256 × 256 px im-
age patches from the TCGA dataset to measure reconstruction fidelity. For the
autoencoders we choose SD-1.5 [21], SD-3 [7] and DC-AE [4]. The SD-1.5 and
SD-3 autoencoders downsample the image by a factor of 8, with SD-1.5 using
4 channels in the embedding whereas SD-3 uses 16 channels. The DC-AE f32
variant downsamples the image by a factor of 32 and uses 32 latent channels.

In Table 1, we compare the compression rates of JPEG at different quality
settings against the autoencoder models. To assess reconstruction fidelity, we
employ three pathology foundation models—UNI [5], Phicon-v2 [9], and Gigap-
ath [25]. Foundation pathology models [5,9] train an image encoder that embeds
images into a learned embedding vector in Rk. These encoders maximize the
similarity of the k-dimensional embeddings for images that are semantically and
visually similar while minimizing it for different images.

In our assessment, we extract embeddings from both the original and recon-
structed images and compute their cosine similarity. Traditional image quality
metrics, such as SSIM and PSNR capture pixel-level differences and are inade-
quate for accurately assessing the quality of pathology images [26]. Embedding
similarity however provides a more task-relevant evaluation, as it correlates bet-
ter with downstream performance. Our results show that existing autoencoders



Pathology Image Compression with Pre-trained Autoencoders 5

already achieve adequate reconstruction fidelity; even the aggressive compression
performed by DC-AE maintains better embedding similarity than JPEG while
requiring half the storage.

Table 1. Compression metrics for JPEG and different LDM autoencoders. Fine-tuning
boosts reconstruction fidelity. Employing a K-means-based quantization allows for min-
imal storage requirements while preserving important pathology image features.

Compression Fine-tuned Quant Size
(KB)

Embedding similarity Image quality
UNI Phicon-v2 Gigapath SSIM PSNR

JPEG - 75 − − 18 0.988 0.985 0.985 0.994 41.93
JPEG - 50 − − 15 0.904 0.855 0.866 0.964 32.97
JPEG - 20 − − 7 0.734 0.623 0.645 0.870 27.69
JPEG - 10 − − 5 0.512 0.456 0.407 0.788 25.13

SD-1.5

✗ ✗ 16 0.837 0.825 0.796 0.651 22.55
✓ ✗ 16 0.932 0.935 0.909 0.649 22.50
✓ static-int8 4 0.912 0.921 0.878 0.639 21.99
✓ K-means 4 0.932 0.935 0.909 0.649 22.49

SD-3

✗ ✗ 64 0.959 0.931 0.947 0.894 28.25
✓ ✗ 64 0.978 0.967 0.972 0.877 27.42
✓ static-int8 16 0.944 0.934 0.932 0.862 26.67
✓ K-means 16 0.978 0.967 0.972 0.877 27.41

DC-AE-f32

✗ ✗ 8 0.733 0.747 0.659 0.536 20.82
✓ ✗ 8 0.906 0.925 0.868 0.538 21.03
✓ static-int8 2 0.900 0.921 0.861 0.537 21.06
✓ K-means 2 0.906 0.926 0.867 0.538 21.03

3.2 Pathology fine-tuning for AEs

Although existing autoencoders produce faithful reconstructions, they also make
non-negligible changes to specific pathology features that may be critical in
downstream tasks. In Fig. 1 we demonstrate one such example, where the DC-
AE model changes the cell contents and structures in its reconstructions. We
develop a simple fine-tuning scheme for pre-trained autoencoders to better align
the image reconstructions, retaining important pathology features.

To perform this alignment, we utilize foundation pathology models and fine-
tune only the decoder with an additional loss that maximizes the similarity
of the reconstruction and the original image in the learned embedding space of
a foundation model. Specifically, for an image x and its reconstruction y, we
use UNI [5] as the foundation model and minimize the L1 distance between the
embeddings produced by the UNI encoder for them -

LUNI(x, y) = ||UNI(x)− UNI(y)||1. (1)

Following the training scheme of previous autoencoders [21], we use an L1
pixel reconstruction loss and a learned PatchGAN discriminator loss [16]. We
select 2500 WSIs from TCGA Breast, Colon, and Prostate. Using DSMIL [19],
we extract 256 × 256 patches at 20× magnification, yielding 24 million patches.
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We utilize the codebase of [21] to finetune the autoencoders. We set the learning
rate at 5× 10−5 with a warmup of 10,000 steps. We train for 120,000 iterations
on 8 NVIDIA A100 GPUs, with a batch size of 12 per GPU. The loss used is

L(x, y) = wL1LL1(x, y) + wGANLGAN(x, y) + wUNILUNI(x, y) (2)

where we choose wL1 = 1, wGAN = 0.5 and wUNI = 1.
We find that training only the decoder is enough to improve the pathology-

specific reconstruction metrics, even when using a relatively small dataset. By
preserving the encoder, we ensure that the AE latent space is unchanged and
we only learn to interpret it differently during reconstruction. We validate the
assumption that the existing autoencoders can already compress pathology im-
ages adequately and that we only need to slightly alter the reconstruction part.
Fine-tuning the full autoencoder model would require significantly more data to
ensure that the learned latent would not overfit to the fine-tuning dataset.

The results presented in Table 1 show that fine-tuning leads to a significant
boost in embedding similarity across all models. Notably, DC-AE improves from
0.733 to 0.906, demonstrating that fine-tuning enables even highly compressed
representations to retain critical information. Additionally, fine-tuning enables
AEs to surpass JPEG in embedding similarity at comparable compression ra-
tios. For example, fine-tuned SD-1.5 achieves a UNI similarity of 0.932, whereas
JPEG-50 – despite having a similar compression ratio – only reaches 0.904, in-
dicating that learned compression better preserves meaningful information.

3.3 Quantization

To further reduce storage, we apply quantization to the AE latents, convert-
ing the continuous-valued representations into more compact discrete values.
The straightforward approach is static int8 quantization, where the range of
the latent representations is split into equally spaced bins and mapped to 8-
bit integers. However, this method does not consider the statistics of the latent
representations; we find that the values are not uniformly distributed but have
higher concentration near 0, which can be partially attributed to the regular-
ization applied to the AEs (e.g. KL). This naive approach noticeably degrades
reconstruction quality due to the misalignment between chosen quantization bins
and the actual latent distribution.

To mitigate this, we propose a clustering-based quantization strategy that
adapts to the distribution of latent values. Instead of mapping values to fixed
bins, we first learn a set of representative centroids using K-means clustering and
then quantize the latents based on these learned clusters. The process consists
of the following steps: (1) Cluster learning: We extract latents from randomly
sampled TCGA images and apply K-means clustering on the values, learning 256
clusters (8-bit). (2) Compression: Each latent value is assigned to its closest
cluster center, only storing the cluster index instead of the floating-point value.
(3) Decompression: Stored indices are replaced with their respective float-
valued cluster centers, followed by passing the latent through the AE decoder.
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Table 1 shows that static int8 quantization leads to a non-trivial drop in
embedding similarity across all models. In contrast, K-means clustering-based
quantization attains nearly the same embedding similarity as the non-quantized
representations while considerably reducing storage requirements.

4 Downstream tasks with autoencoder reconstructions

We benchmark the downstream performance of all 3 pre-trained and fine-tuned
AEs on dense pixel-level and image-level tasks. For those benchmarks, we en-
code the images into latents using the AEs and reconstruct the image from the
compressed representations. We compare the performance of the downstream
methods using the original images vs using the reconstructed images.

4.1 Image-level tasks

For slide-level classification on TCGA-BRCA, we perform subtyping (Invasive
Ductal Carcinoma vs. Invasive Lobular Carcinoma) using ABMIL [15]. For patch-
level classification, we classify images from the NCT-CRC dataset [17] into nine
tissue classes. In both cases, we perform 10-fold cross validation.

Table 2 shows that existing AE reconstructions already achieve strong clas-
sification performance, with minimal drop compared to original images. Fine-
tuning further closes the gap, particularly for SD-1.5 and DC-AE-f32, bringing
them closer to the original image results. This highlights the effectiveness of
our approach and suggests that high representation similarity in the foundation
model embedding space translates to functional similarity in predictive tasks.

Table 2. Classification using original (uncompressed) images and AE-reconstructed
images. Fine-tuning improves performance, bringing it closer to that of original images.

Compression Fine-tuned BRCA subtyping NCT-CRC
Original images − 94.89 ± 2.67 96.31 ± 0.20

SD-1.5 ✗ 92.89 ± 2.51 94.36 ± 0.48
✓ 93.96 ± 2.77 95.73 ± 0.21

SD-3 ✗ 94.44 ± 2.65 95.99 ± 0.16
✓ 94.05 ± 3.40 96.41 ± 0.14

DC-AE-f32 ✗ 92.82 ± 1.81 89.23 ± 0.61
✓ 93.30 ± 2.15 94.65 ± 0.29

4.2 Pixel-level tasks

We perform segmentation using SAM-path [27] on two datasets – the Breast
Cancer Semantic Segmentation (BCSS) dataset [1] and the Colorectal Adenocar-
cinoma Gland (CRAG) dataset [13]. BCSS contains patches sampled from 151
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TCGA-BRCA WSIs on which we perform tissue region segmentation. CRAG
contains patches sampled from 38 colon cancer WSIs, and we perform semantic
segmentation of colorectal adenocarcinoma and benign glands.

In Table 3 we showcase the average Dice score, intersection over union (IoU)
and F1 score for the original images, JPEG-compressed images and autoencoder
reconstructions. For the BCSS dataset, we perform comparable compression to
JPEG-10 (32 vs 57 KB) when using our K-means quantization, while only having
<1% performance drop for all metrics. With JPEG-10 the performance decreases
by >10%. Similarly, on CRAG we apply similar compression (72 vs 93 KB)
without altering the result while JPEG-10 reduces the Dice score by >3%.

Table 3. Segmentation results using original, JPEG and AE-compressed images. The
original CRAG images are uncompressed whereas BCSS are compressed with JPEG-
75. Heavy JPEG compression corrupts task-important features while AE compression
(with and without fine-tuning) with quantization, does not sacrifice performance.

Compression FT Quant BCSS CRAG
Size (KB) Dice ↑ F1 ↑ IoU ↑ Size (KB) Dice ↑ F1 ↑ IoU ↑

Original images − − 545 71.57 80.38 67.20 3935 87.16 85.24 85.24
JPEG 50 − − 154 71.16 79.92 66.56 246 86.87 85.38 85.38
JPEG 10 − − 57 60.56 68.02 51.54 93 83.45 84.87 84.87

SD-1.5
✗ ✗ 256 71.34 80.12 66.84 576 86.57 84.34 84.34
✓ ✗ 256 71.41 80.20 66.95 576 86.80 85.48 85.48
✓ ✓ 64 71.34 80.13 66.84 144 86.82 85.50 85.50

SD-3
✗ ✗ 512 71.52 80.33 67.12 1152 86.85 84.49 84.49
✓ ✗ 512 71.46 80.26 67.02 1152 86.90 84.80 84.80
✓ ✓ 128 71.47 80.27 67.04 288 86.90 84.81 84.81

DC-AE-f32
✗ ✗ 128 71.25 80.02 66.70 288 87.27 87.62 87.62
✓ ✗ 128 71.21 79.97 66.63 288 87.20 88.06 88.06
✓ ✓ 32 71.20 79.96 66.62 72 87.20 88.08 88.08

5 Conclusion

In this work, we propose a new digital histopathology image compression scheme
using pre-trained autoencoder models. We find that autoencoders trained for
LDMs can effectively compress pathology images better than the current widely-
used compression algorithms, such as JPEG. Furthermore, we showed that we
can further improve the autoencoder reconstructions with small-scale fine-tuning
using a pathology-specific perceptual metric.

A limitation of our method is that decompression using AEs is slower than
JPEG, which may impact real-time applications. Despite this limitation, we
believe that our work can significantly impact the digital histopathology field,
where data storage remains a significant issue. By developing better compres-
sion schemes we can increase the data availability, which is necessary for future
foundation model training in the pathology domain.
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