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Abstract—The concept of a learning healthcare system (LHS)
envisions a self-improving network where multimodal data from
patient care are continuously analyzed to enhance future health-
care outcomes. However, realizing this vision faces significant
challenges in data sharing and privacy protection. Privacy-
Preserving Federated Learning (PPFL) is a transformative and
promising approach that has the potential to address these
challenges by enabling collaborative learning from decentralized
data while safeguarding patient privacy. This paper proposes
a vision for integrating PPFL into the healthcare ecosystem to
achieve a truly LHS as defined by the Institute of Medicine (IOM)
Roundtable.

Index Terms—Privacy-Preserving Federated Learning, Learn-
ing Healthcare System, Data Privacy, Healthcare Innovation,
Collaborative Learning.

I. INTRODUCTION

Biomedical health data is often generated across various
instruments, hospitals, or departments that are administratively
and geographically disparate. Efforts are usually required to
move data to a central location for analysis, requiring consid-
erable time and infrastructure investments to facilitate. These
efforts result in the creation of clinical data warehouses and
disease-specific consortiums, which often evolve into data silos
making data discovery and sharing cumbersome. To realize a
truly learning healthcare system as defined by the Institute of
Medicine—and to deliver personalized prognosis, diagnosis,
and treatment planning—it is essential to learn from and
synthesize multimodal biomedical data collected and stored
across diverse administrative and geographical boundaries.
Biomedical data are inherently multimodal, encompassing
electronic health records, genomic information, medical imag-
ing, laboratory results, and data from wearable devices, among
others. However, these rich datasets are often soloed due to
administrative disparities, privacy concerns, and regulatory
constraints, which impede comprehensive analysis and inte-
gration. Furthermore, additional efforts are needed to extract,
transform, and load data to gain insights. Recent advances

in artificial intelligence (AI) have demonstrated the potential
for rapid insight generation from scientific and biomedical
data [1]–[3], however, developing effective biomedical AI
models requires substantial data and computing resources [4].
The conventional paradigm of building large-scale AI models
includes collecting extensive data and training models at a
central location. With the increasing volume and velocity
of data generation, such a centralized model development
paradigm is becoming impractical in some scientific domains.
In biomedical health, the central collection of data from
multiple data generation sources, especially those across dif-
ferent administrative boundaries, is often not possible due
to data privacy and federal policies like HIPAA [5], GDPR
[6]. Nonetheless, models trained on limited data sets from a
single source frequently fail to perform in real-world situations
(performance degradation) when the distribution of real-world
data differs from the distribution of the training data, a
phenomenon known as model shift.

II. PRIVACY PRESERVING FEDERATED LEARNING

Several approaches have been proposed to alleviate model
drift, detect performance degradation and facilitate the de-
velopment of robust AI models that perform reliably in the
real world. Federated learning (FL), a distributed learning
approach where a global model is created by aggregating
model weights from models trained on data at various sites,
can address the challenges of building robust AI models that
are resistant to model drift without direct data sharing [7]–
[10]. Though no data are directly shared among sites, however,
FL by itself does not guarantee the privacy of data, because
the information extracted from the communication of FL
algorithms can be accumulated and utilized to infer the private
local data used for training [11], [12]. Differential Privacy (DP)
[13], a privacy-enhancing technology (PET), when integrated
with FL is shown to prevent data reconstruction by attackers.
DP adds noise to model updates to prevent accurate data
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Fig. 1. An envisioned privacy-preserving federated learning framework for a truly learning healthcare system: Under the coordination of a trusted and
secure server, multiple hospitals collaboratively train robust, generalized machine learning models using multimodal biomedical data stored in their cloud or
on-premise facilities. With continuous learning capabilities integrated into the framework, the models can detect and avoid performance degradation, adapt
dynamically in real time to any shifts in data distributions, availability of new patient data, and evolving health trends.

reconstruction by attackers. Infrastructure challenges in the
implementation of FL at scale include dealing with hetero-
geneity of computational resources available to researchers,
identity and access management challenges to setup end-to-
end secure federations, ease of use in setting up and running
FL experiments, addressing privacy issues for different data
types, and FAIRness constructs when performing AI experi-
ments to enable reproducibility [14], [15].

To address these issues, we have developed the Advanced
Privacy-Preserving Federated Learning (APPFL) [16], [17]
framework with advances in differential privacy [18]. APPFL
enables the training of AI models in a distributed setting across
multiple institutions, where sensitive data are located, with
the ability to scale on distributed, heterogeneous computing
resources to help create robust, trust-worthy AI models in
biomedical health applications where data privacy is essen-
tial. Setting up a secure FL experiment across administra-
tive boundaries that involves heterogeneous high-performance
computational resources across distributed sites or cloud com-
puting facilities requires technical capabilities that may not
be available for all. Additionally, most existing PPFL frame-
works typically involve downloading and configuring complex
software, manually creating trust boundaries to enable secure
gradient aggregation, and understanding the technical details
of underlying deep learning software stack [19], [20], all of
which can be cumbersome and technically demanding. There-
fore, to reduce these barriers and empower domain experts to
leverage PPFL, we created the Advanced Privacy-Preserving
Federated Learning as a service (APPFLx) [21] platform,
which streamlines cross-silo PPFL using an easy-to-use web
interface for managing, deploying, analyzing, and visualizing
PPFL experiments. APPFLx ensures secure federations using
end-to-end strong Identity and Access Management via Globus
Auth [22], enabling members to create new federations or
join ones using their institutional identities, perform privacy-
preserving training on datasets at their respective institutions,

and securely share the model weights with the service for se-
cure aggregation. Additionally, determining quality of training
data is paramount in developing biomedical health AI models
as low-quality or biased data leads to ineffective and unreliable
AI models. Therefore, to ensure the integrity of training
data before committing significant computing resources to
training jobs, APPFL incorporates the AI Data Readiness
Inspector (AIDRIN) [23], an open-source toolkit. AIDRIN
integration allows for a distributed quantitative assessment of
data readiness, providing data scientists with vital metrics that
streamline data preparation and facilitate informed decisions
regarding the suitability of data for AI applications. It not only
saves time but also optimizes the effort invested in the initial
stages of model development.

While APPFL and APPFLx have significantly streamlined
traditional PPFL experiments and facilitated the training of
unimodal biomedical AI models [17], [24], there remains
considerable progress to be made. As illustrated in Figure 1,
our envisioned PPFL framework aims to advance a truly
learning healthcare system that is capable of providing more
precise diagnoses, prognoses, treatments, and preventative
measures. Such a framework utilizes a trusted server, secured
with privacy-enhancing techniques and robust cybersecurity
algorithms, to orchestrate PPFL experiments among client
hospitals with heterogeneous cloud or on-premise computing
and storage systems. Through this collaboration, multiple
healthcare delivery organizations can jointly train robust ma-
chine learning models that effectively generalize across diverse
patient populations by leveraging multimodal biomedical data
stored within their private infrastructures. Moreover, addition
of continuous learning to PPFL framework, allows for early
detection of any performance degradation, real-time adaptation
of models to new patient data, and evolving health trends
across multiple healthcare provides. In the following sections,
we will provide details about the essential building blocks
of this envisioned framework, including federated training



for multimodal biomedical models, hierarchical FL for col-
laborative training beyond limited trust boundaries, federated
continuous training, and cost-aware FL on the cloud.

III. FEDERATED TRAINING OF MULTIMODAL
BIOMEDICAL MODELS

Biomedical health data are inherently multimodal, encom-
passing electronic health records, genomic information, med-
ical imaging, laboratory results, and data from wearable de-
vices, among others [25], [26]. In practice, clinicians typically
integrate multiple available data types when making diagnoses
or treatment decisions, most current biomedical health AI
models are limited to specific tasks based on single data
sources, such as imaging or text [27]. Multimodal AI models,
which can utilize data from diverse sources like genetics,
imaging, clinical records, and environmental factors, offer a
promising solution to this limitation. These models have the
potential to handle the complexity and high dimensionality
of biomedical data, which is crucial for understanding in-
teractions within biological systems and predicting complex
diseases. As biomedical data increasingly become multimodal,
such models are poised to revolutionize personalized medicine,
digital clinical trials, and real-time health surveillance [27].
Currently, most FL applications in biomedicine use traditional
horizontal FL, where all the clients share the same feature
space and collaboratively train the same model architecture
under the orchestration of a central server. These applications
primarily rely on uni-modal data such as electronic health
records and medical imaging [24], [28]–[30]. However, given
the inherently multimodal nature of biomedical data, it is
important to explore the feasibility of employing PPFL to train
robust, generalized multimodal AI models by using the diverse
biomedical health data available across diverse administrative
and geographical boundaries.

A. Multimodal Learning

Some common modalities in biomedicine include images
(e.g., MRI, histology), tabular data (e.g., gene expression), and
text (e.g., clinical data). Multimodal learning aims to utilize
these different data modalities to provide the most informative
predictions. Combining data from multiple sources enhances
the information available beyond what any individual modality
can provide, and integrating weak signals across modalities
can help overcome noise present in a single modality.

For example, integrating molecular, imaging, and clinical
data can improve the quality and accuracy of biomarkers for
cancer, offering a more comprehensive understanding of the
disease, instead of any of these modalities individually. Single-
modality data, such as radiology scans or gene expression
data from bulk RNASeq, are often found to be insufficient
for capturing the complex heterogeneity of cancer. While
radiology scans provide macroscopic information with spatial
context, bulk RNASeq gene expression data offers molecular-
level insights without the spatial context. By integrating these
orthogonal data sources, we can capture complementary as-
pects of tumor biology.

Different data modalities—such as clinical notes, medical
images, genomic data, and sensor readings—often contain
complementary information and may vary in quality. When
these diverse modalities are effectively integrated, they can
provide a more comprehensive and informative view than any
single data type alone, leading to more accurate prognoses,
diagnoses, and treatment plans. However, directly combining
such heterogeneous data is often impractical due to differ-
ences in data formats, structures, scales, and the complexities
involved in processing them together.

To address this challenge, most multimodal models employ
embeddings, transforming data from each modality into unified
representations within a shared feature space. This approach
facilitates the integration of different data types by encoding
their essential features in a way that makes them compatible
for joint analysis. The method of embedding generation is
critical, as it significantly affects the level of inter-modal
learning and, consequently, the overall performance of the
model. Effective embedding strategies enhance the model’s
ability to learn from the combined data, leading to more robust
and insightful outcomes in biomedical research and healthcare
applications.

Multimodal AI models generate joint representations of
heterogeneous data modalities through data fusion, which can
be broadly categorized into three types: early fusion, joint
fusion, and late fusion [31]. In early fusion, the embeddings
from the different modalities are generated independently and
then combined to act as input to a downstream task-specific
prediction model. In joint fusion, the embeddings from all the
modalities are dynamically updated during training, allowing
them to learn directly from the task objective as well as from
the other modalities. In late fusion, instead of combining the
embeddings from different modalities, the predictions from
separate uni-modal submodels are combined into a final pre-
diction. While joint fusion is theoretically the most informed
way to learn the embeddings, it can be computationally
expensive as it requires training the embedding generation
models and the final prediction model simultaneously.

Integrating data from multiple sources and modalities to
train a single AI model can be challenging due to varying
information content and quality across modalities and sources.
The embeddings must be context-specific and capable of
capturing relevant features from their respective modalities.
They should have sufficient dimensionality to represent the
underlying characteristics of the modalities that are relevant
for the task, but not so high as to become computationally
expensive for model training. Such embedding generation
methods can differ significantly among modalities, and are
often strongly tied to the biological insights of the data they
represent. For example, in histology whole slide images (WSI)
or MRI scans, convolutional neural networks (CNNs) or vision
transformer models can be used to generate embeddings after
learning important features from a large number of training
samples [32]. For bulk RNASeq data available in tabular
form, variational autoencoders (VAEs) can be used to generate
lower dimensional context-specific embeddings from the very
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Fig. 2. Different sample and multimodal feature distribution patterns among clients in multimodal federated learning.

high dimensional gene expression data [33]. By carefully
selecting embedding generation techniques tailored to each
modality, it is possible to harmonize diverse data sources
leading to improved model performance and more informative
predictions.

B. Integration of Multimodal Learning in a Federated Setting

When training a multimodal model in a federated setting,
there are three scenarios based on the distribution of the
sample and multimodal feature spaces. In the first scenario,
when all clients shared the same multimodal feature space, as
depicted in Figure 2-a, a multimodal model can be trained
directly using traditional FL algorithms, where each client
trains an individual model with the same architecture and
shares the locally trained model parameters for aggregation
[34], [35]. In the second scenario, the clients share the same
sample space but possess different data modalities, as shown in
Figure 2-b, making vertical FL (VFL) an appropriate solution.
In VFL, each client trains a local model on its respective data
modalities, generates latent representations, and sends these to
the server to update the global model. The server then sends
back gradients for the corresponding latent representations,
allowing each client to update its local model [36], [37].
However, VFL typically requires data identifiers to align
distributed samples, which may not always be feasible in
biomedical applications. In the third scenario, where clients
have different sample and multimodal feature spaces and lack
unique identifiers for aligning samples (Figure 2-c), training a
multimodal model collaboratively becomes more challenging.
One potential solution is for each client to train a sub-model
on its local data modalities and share it with other clients
to collectively build a larger multimodal model using inter-
mediate or late fusion techniques. Another approach involves
having each client train a local model on its private data
modalities and transmit the latent representations of publicly
available multimodal data to the server for sample alignment
[38]. Additionally, generative models could be used to create
synthetic data that mimics the distribution of each client’s
multimodal data, enabling alignment without compromising

sensitive information. While promising, these approaches re-
main an open area of research, requiring further investigation
to address the complexities of multimodal FL.

IV. HIERARCHICAL FL FOR COLLABORATIVE TRAINING
BEYOND THE TRUST BOUNDARIES

In FL, while no data are directly exchanged between the
server and clients, private and confidential training data can
still be vulnerable to reconstruction from shared model gra-
dients through gradient inversion techniques [11], [12], [24],
[39]. As a result, some clients may be reluctant to share trained
model parameters or gradients with an untrusted central server.
For instance, small clinics within a geographic region might
prefer to share model parameters exclusively with a trusted or
affiliated local hospital. However, this limited trust boundary
could result in biased localized datasets, restricting the model’s
ability to generalize across diverse populations. Additionally,
the need for diverse data becomes even more pressing in
biomedical health applications involving rare diseases, where
datasets are often small and fragmented across multiple insti-
tutions. Limiting data sharing with a single trusted entity may
reduce the ability to capture complex patterns that are essential
for understanding and diagnosing such conditions.

Hierarchical federated learning (HierFL) [40], [41] offers
a solution to this challenge by enabling broader participation
while maintaining trust. As illustrated in Figure 3, HierFL al-
lows groups of clients, such as small clinics, to first share their
local model parameters with an intermediate server trusted by
the clients, such as a large local hospital. This intermediate
server aggregates the local parameters, obscuring individual
client information. Aggregated models from multiple interme-
diate servers, representing different trusted groups, are then
sent to a central root server for further global aggregation.
The resulting global model, now trained on a more diverse
and representative dataset, is subsequently distributed back
to the clients for further local training. HierFL enhances
privacy by introducing an additional layer of aggregation with
trusted intermediate servers, thus encouraging wider partic-
ipation by clients beyond their immediate trust boundaries.
This intermediate aggregation process safeguards individual



model details while enabling the creation of a global model
that generalizes better across varied populations, making it
particularly valuable for biomedical health applications.

Trust Group 1 Trust Group 2 Trust Group 3

Fig. 3. Hierarchical federated learning helps to connect several small trust
group to a larger federation.

V. FEDERATED CONTINUOUS LEARNING FOR
MULTIMODAL BIOMEDICAL MODELS

Continuous learning, the process by which models are
continuously updated and improved as new data becomes
available [42], [43], is essential in biomedical applications
[44]. It enables healthcare systems to remain adaptive and
responsive, evolving to meet the ever-changing needs of
patients across different settings. In a field where medical
knowledge, treatments, and patient conditions are constantly
evolving, continuous learning ensures that models stay relevant
and resistant to performance degradation by incorporating
real-time data. By continuously integrating new information
from sources like patient records, clinical trials, and wearable
devices, healthcare models can provide more accurate and
robust predictions, diagnostics, and treatment recommenda-
tions. This dynamic approach allows healthcare systems to
offer more personalized, timely care while improving out-
comes for diverse patient populations. Ultimately, continuous
learning helps reduce healthcare disparities and creates a more
effective, data-driven healthcare ecosystem that can evolve in
response to emerging challenges, thus enabling true learning
healthcare systems (LHS).

Integrating continuous learning capabilities into a PPFL
framework offers the framework the ability to timely adapt to
new data from diverse medical institutions while maintaining
data privacy. This integration allows models to stay up-to-date
with the latest medical advancements, patient information, and
social health trends, leading to improved predictive accuracy
treatment recommendations. Additionally, continuous learning
within a PPFL framework ensures that the models evolve to
reflect the diversity of healthcare settings and populations,
reducing biases and enabling better generalization. Ultimately,
this combination enhances the capacity of healthcare systems
to provide real-time, data-driven insights without compromis-
ing patient privacy. Additional capabilities need to be devel-
oped to calculate the optimal privacy budget for biomedical
multimodal datasets to prevent model inversion attacks but
allow for improved model performance.

Additionally, the PPFL framework can be extended with
federated evaluation and monitoring capabilities to enable
timely assessment and monitoring of the model’s performance
across diverse and distributed client populations. As shown in
Figure 4, whenever a biomedical AI model is trained via FL,
the system will periodically and systematically evaluate its key
performance metrics such as accuracy, precision, and recall
in a federated setting to ensure the model remains effective
under varying conditions and data distributions. Should the
system detect any significant performance degradation, such as
a decline in accuracy or a shift in data patterns, these insights
can trigger an immediate, automated response via initiating a
federated continuous learning process among the distributed
clients to allow the model to adapt and retrain on new or
evolving datasets without compromising data privacy. This
dynamic feedback loop, when coupled with capabilities like
AIDRIN, ensures that the model is regularly updated and op-
timized as needed, preventing performance degradation while
addressing challenges such as data drift, population variance,
or emerging trends in real-time. These capabilities significantly
enhance the framework’s resilience and scalability, particularly
in environments where data is continuously generated and
needs to be rapidly incorporated into the model.

Federated 
Learning

Train 
Set

New 
Labeled 

Set

AI Model Federated 
Evaluation

No Degradation

Federated 
Continual 
LearningDegradation

Train New AI Model on New Labeled Dataset

Initial federated training Periodic federated evaluation Federated continual learning

Fig. 4. Federated continuous learning workflow with a federated evaluation
feedback loop for timely performance degradation detection.

VI. COST-AWARE FL ON THE CLOUD

Training AI models is often expensive, especially when re-
lying on GPU virtual machine instances from cloud providers
like AWS, Google Cloud Platform, and Azure. As many medi-
cal institutes lack sufficient on-premise computing and storage
resources, they are highly dependent on cloud providers for AI
model training tasks. This creates a crucial need to make FL
experiments more cost-effective, speeding up the transition of
FL from experimental prototyping to real-world applications.
Popular cloud providers offer a cost-saving option called spot
instances, which allow users to bid for unused virtual machines
at significantly lower prices than on-demand instances (usually
70% to 90% cheaper). However, as a compromise for the
low price, these spot instances can be terminated at any time
with a short notice when the cloud provider needs them for
on-demand users. As a consequence, clients should check-
point their local training status and notify the server when



termination is imminent. On the server side, inspired by work
like [45], which uses a server-side computing-aware scheduler
to enhance efficiency in heterogeneous environments, a cost-
aware scheduler can be designed to make the FL experiments
cost-effective, as shown in Figure 5. This scheduler would
record the cost of training in real-time, manage the comput-
ing instances within a predefined training budget, reallocate
resources for terminated instances, and perform aggregations
even in the absence of offline clients. Implementing such cost-
saving measures can significantly reduce financial barriers,
making it more feasible to deploy FL more broadly within
the healthcare ecosystems.

Compute Storage Compute Storage Compute Storage

Cost-aware
Scheduler

Fig. 5. Using a server-side cost-aware scheduler to achieve cost-effective FL
experiments among clients on the cloud.

VII. CONCLUSIONS

In this paper, we propose that privacy-preserving federated
learning (PPFL) could offer a viable pathway toward realizing
a truly learning healthcare system by facilitating the training
of robust multimodal biomedical models while preserving
patient data privacy. Our envisioned PPFL framework goes
beyond traditional limitations by incorporating supports for
hierarchical FL, which extends trust boundaries and enhances
collaborative potential among diverse healthcare institutions.
It also integrates federated evaluation and continuous learning
mechanisms that allow for real-time updates and improve-
ments to models based on new data and insights, ensuring
that the models remain relevant and accurate over time.
Moreover, the envisioned framework includes the development
of cost-effective algorithms that make the adoption of FL
feasible even for institutions with limited resources. Through
these innovations, PPFL can drive forward the evolution of
healthcare towards more automated, responsive, and efficient
practices.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research,
under Contract DE-AC02-06CH11357.

REFERENCES

[1] V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu,
A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros
et al., “Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs,” jama,
vol. 316, no. 22, pp. 2402–2410, 2016.

[2] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” nature, vol. 542, no. 7639, pp. 115–118, 2017.

[3] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in bioinformatics, vol. 19, no. 6, pp. 1236–1246, 2018.

[4] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child,
S. Gray, A. Radford, J. Wu, and D. Amodei, “Scaling laws for neural
language models,” arXiv preprint arXiv:2001.08361, 2020.

[5] U.S. Congress, “Health Insurance Portability and Accountability Act
of 1996,” https://www.govinfo.gov/content/pkg/PLAW-104publ191/pdf/
PLAW-104publ191.pdf, 1996, public Law 104-191.

[6] European Parliament and Council of the European Union, “Regulation
(EU) 2016/679 of the European Parliament and of the Council of 27
April 2016,” https://eur-lex.europa.eu/eli/reg/2016/679/oj, 2016, general
Data Protection Regulation.
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