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Facilitating large-scale, cross-institutional collaboration in biomedical machine learning (ML) projects requires 
a trustworthy and resilient federated learning (FL) environment to ensure that sensitive information such as 
protected health information is kept confidential. Specifically designed for this purpose, this work introduces

APPFLx - a low-code, easy-to-use FL framework that enables easy setup, configuration, and running of FL 
experiments. APPFLx removes administrative boundaries of research organizations and healthcare systems 
while providing secure end-to-end communication, privacy-preserving functionality, and identity management. 
Furthermore, it is completely agnostic to the underlying computational infrastructure of participating clients, 
allowing an instantaneous deployment of this framework into existing computing infrastructures. Experimentally, 
the utility of APPFLx is demonstrated in two case studies: (1) predicting participant age from electrocardiogram 
(ECG) waveforms, and (2) detecting COVID-19 disease from chest radiographs. Here, ML models were securely 
trained across heterogeneous computing resources, including a combination of on-premise high-performance 
computing and cloud computing facilities. By securely unlocking data from multiple sources for training without 
directly sharing it, these FL models enhance generalizability and performance compared to centralized training 
models while ensuring data remains protected.

In conclusion, APPFLx demonstrated itself as an easy-to-use framework for accelerating biomedical studies across 
organizations and healthcare systems on large datasets while maintaining the protection of private medical data.

1. Introduction

In biomedical research, access to many types of data, such as elec-

tronic health records, medical images, and electrocardiogram (ECG) 
readings, is strictly regulated by law and federal guidelines like HIPAA 
in the United States and GDPR in the European Union. Data access 
committees and Institutional Review Boards (IRB) manually manage ac-

cess controls to ensure that research is ethical and that the privacy of 
research subjects is safeguarded. Historically, these necessary, but cum-

bersome, access restrictions have had the undesirable effect of siloing 
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data in organizations which in turn has stymied collaborative research. 
Federated learning (FL) [1] has been proposed as a viable framework 
to make protected health data available for training machine learning 
models across institutions without explicitly sharing any sensitive data 
(using differential privacy mechanisms) [2–5]. Such a distributed and 
privacy-preserving framework can address, and potentially overcome, 
the institutional and policy-based restrictions limiting the exchange of 
data that is required to train cross-institutional machine learning models 
that are robust and are resistant to model drift.
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Fig. 1. (a) Our APPFLx enhances cross-institute collaborative federated learning workflow. Globus authentication service [20,28] and our APPFLx jointly provide 
researcher identity, data and computing resource management. In this diagram, while sharing the same computing and data storage resource at Institution 𝑋, only 
researchers 𝐴 and 𝐵 are approved to join the FL experiment. (b) Compared to other federated learning frameworks, APPFLx provides a comprehensive solution for 
biomedical research with differential privacy-preserving, secure identity management, and high-performance computing friendly.

Empowered by these capabilities, FL has recently garnered consid-

erable attention in the research community and several solutions have 
been proposed [6–10]. For instance, Flower [7] introduced a large-scale 
framework that can support up to 15 million parallel clients. While 
FATE [11] focuses on scalability and performance, suitable for indus-

trial applications, OpenFL [6] positions itself as a flexible, extensible, 
and easily usable framework for data scientists. Additional efforts have 
focused on ensuring data privacy using various privacy-preserving meth-

ods [4,12–14]. In addition to these, we previously proposed Argonne 
Privacy Preserving Federated Learning (APPFL) framework [8], a com-

prehensive end-to-end secure FL framework that includes multiple FL 
algorithms, differential privacy schemes, and communication protocols. 
Extensive experiments have been carried out to demonstrate its perfor-

mance and communication efficiency on different biomedical datasets 
and computing environments [15,16].

Challenges of FL Framework in Biomedical Research. Despite signif-

icant progress, implementing a Federated Learning framework in multi-

institute biomedical studies presents additional challenges. First, under 
IRB regulations, it is essential to guarantee the trustworthiness of par-

ticipating clients in the FL environment. Access should be restricted to 
authorized members only, and this requires a secure and trusted identity 
and access management (IAM) mechanism embedded into the frame-

work. The second challenge is in managing heterogeneous compute 

resources — such as on-premise computing clusters at one location, and 
cloud-computing services like Amazon Web Services or Google Cloud 
at another location — that use different job schedulers, like Slurm [17] 
or Load Sharing Facility (LSF) [18] (Fig. 1(a)). A mature FL framework 
should address these challenges and be able to operate regardless of 
the underlying infrastructure and guarantee that participation is lim-

ited to trusted and authorized partners. To address these challenges, 
we extended and leveraged APPFLx [19] that emphasizes the modular 
design and privacy-preserving aspects of APPFL [8] with new capabilities

(Fig. 1(b)) which further eases the establishing of cross-institute biomedical 
research.

Identity and Access Management in FL. In order to ascertain that 
participation in an FL experiment is limited to trusted and authorized 
partners in the federation, it is imperative to authenticate users through 
their institutional identities that are integrated with their respective or-

ganizational Identity and Access Management (IAM) services. Globus 
Auth [20,21] provides one such secure service via a single sign-on solu-

tion, enabling researchers to easily access secure data and resources; this 
service is currently used in multiple large-scale initiatives across differ-

ent scientific domains such as astronomy and genomics [22,23]. Globus 
Auth service reduces the time and effort required to control access to 
data while ensuring the security and integrity of the shared resource. 
For these reasons, we integrated Globus Auth in APPFLx to set up secure 
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federations using industry-standard identity and access management ca-

pabilities that enforce authentication and access control.

FL on Heterogeneous High-performance Computing Resource.

There are additional practical requirements to ensure end-to-end se-

curity and provide a simple-to-use framework. For example, it is very 
likely that the participating institutions in the federation have hetero-

geneous computing capabilities such as on-premise high-performance 
computing or cloud computing facilities from different cloud providers. 
In an FL environment, there is generally a dedicated server that receives 
information from a series of participating clients that are collaboratively 
training a shared machine learning model. Clients independently per-

form local computations on their private data and communicate that 
result to the centralized server which in turn updates the joint model. 
Function-as-a-service (FaaS) or federated functions are used to execute 
model training at clients and model aggregation at the server. As a result, 
we were able to leverage Globus Compute [24] service, which provides 
flexible distributed task execution mechanisms. This is enabled by ex-

posing secure endpoints on the participating client machines that are 
accessible to the centralized server. Globus Compute has been applied 
to high-performance computing tasks in many types of research [25,26]. 
Since Globus Compute simply communicates data between a client and 
the server, it makes the federation completely agnostic to the individual 
computing platforms of the participating clients. This setup permits the 
client to leverage their institutionally available compute (e.g., number 
of compute nodes, cores per worker, allocation account) which removes 
the burden of managing system-detailed configurations on the central-

ized server resulting in considerably easier and faster deployment times. 
This is among the first implementations of Globus Compute as the com-

munication backbone of an FL framework, together with FLoX [27]. 
Nonetheless, the focus of FLoX and APPFLx is different. FLoX is de-

signed for easy deployment of single-user multi-device cross-device FL 
experiments and does not need to support multi-user IAM provided by 
Globus Auth.

Aims and Contributions. Here, we describe the integration of Globus 
Auth [20] with Globus Compute [24] into our previously proposed

APPFL framework [8] to create APPFLx. The key focus of this study 
is introducing APPFLx to expedite secure FL in biomedical research, 
demonstrated through two real-world, large-scale collaborations across 
multiple research institutions with protected health data. In short, the 
main contributions of this study are provided as follows:

• APPFLx streamlines the FL deployment process and provides both 
secure end-to-end communication and ensures strong identity and 
data access management controls that are compatible with organi-

zational identity and access management services and with federal 
requirements.

• APPFLx introduces a modular design that empowers users to de-

velop customized FL algorithms that are agnostic to the underlying 
compute infrastructures.

• An FL-as-a-service web platform, APPFLx enables non-experts to 
quickly set up and deploy secure federated learning experiments.

• To illustrate the pliability of this framework, we conducted exten-

sive experiments on two real-world biomedical research domains 
in 1) estimating human biological aging from ECG waveforms and, 
2) detecting COVID-19 disease from chest radiographs (CXR). The 
results demonstrate that federated learning studies can be easily 
established across four distinct research facilities to jointly train 
machine-learning models in a privacy-preserving fashion.

• Finally, we conducted model inversion attacks to highlight the ne-

cessity of using privacy-preserving technologies in FL for biomedi-

cal use cases and demonstrate the effect of applying the differential 
privacy protection scheme implemented by APPFLx framework.

Section 2 briefly summarizes the key aspects of APPFLx, model 
inversion attacks and other relevant details on experimental setup. Sec-

tion 3 walks through the two case studies, and provides details on model 

inversion attacks that we use to showcase the benefit of APPFLx in pri-

vacy preservation. The main discussions of this study are provided in
Section 4. Finally, in Section 5 we provide the main conclusions.

2. Methods

The methodologies of this study encompass three key aspects: (1) 
The introduction of APPFLx for facilitating FL in biomedicine research 
(Section 2.1), which will be demonstrated using two real-world case 
studies in the subsequent section; (2) The design choices and architec-

ture of APPFLx (Section 2.2); and (3) The model inversion attacks via 
gradient data leakage study (Section 2.3).

2.1. Enabling secure federated learning in biomedicine using APPFLx

Key Steps for Establishing FL Experiment. APPFLx is an extensible 
FL framework with built-in support for several FL algorithms, making 
it independent of any specific aggregation scheme. Users can easily ex-

periment different federation strategies and select the right algorithm 
depending on their use case and resource constraints. Researchers can 
easily set up an FL experiment in a simple 4-step process. We briefly 
summarize the workflow here:

1. Identity Verification: Participating institutions in FL sign-in to the 
federation using their institutional identity that is integrated with 
a Globus identity [20]. Globus Auth is integrated with identities of 
most US universities and national labs. The scientist setting up the 
FL experiment (the orchestrator) organizes the participating Globus 
identities into a Globus group and assigns roles to each member. A 
secure communication channel for moving data between only these 
parties is established in this way.

2. System Setup: All clients install and configure a Globus Compute-

endpoint on the target compute and register the address of this 
endpoint with the centralized FL server.

3. Configuration: The researcher can then define any model archi-

tecture and data loader in PyTorch [29] for their project. Addi-

tionally, training hyper-parameters, FL aggregation scheme, and 
privacy-preserving settings on the participating clients are provided 
through a simple configuration file.

4. Running FL Experiment: Finally, the researcher establishes and mon-

itors the FL experiment. Besides regular training tasks, APPFLx also 
(optionally) performs cross-site validation, in which a model is sent 
and evaluated on the local private datasets at clients without shar-

ing the data.

Web-based User Interface for Rapid FL Setup. In order to further 
lower the barrier in conducting FL experiments, we created APPFLx

as a service (FL-as-a-Service) and a web application [19]. Using a user-

friendly dashboard, a researcher can interactively complete all the re-

quired steps outlined above, such as managing Globus groups, register-

ing new client endpoints, uploading model descriptions, and configuring 
FL parameters for both the server and the clients. The platform also has 
the ability to automatically initiate and deploy an APPFLx server, with 
appropriate access management policies expressed as AWS IAM rules, 
to an ECS container to act as the orchestration server. For started exper-

iments, it is easy to monitor the training progress by leveraging existing 
visualization tools such as Tensorboard [30] or inspecting the real-time 
client logs. The service is made publicly available at https://appflx.link.

In the following sections, we describe setting up FL experiments 
across organizational boundaries using heterogeneous computing capa-

bilities for the training of ML models and fast iteration of FL experi-

ments. We aim to demonstrate the flexibility and power of the APPFLx

service while demonstrating the importance of FL in developing robust 
AI models under undesirable distribution shifts.
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Fig. 2. Main components of the APPFLx. Modules can be classified into four layers: authentication, web-based configuration, execution and communication. 

2.2. Architecture of APPFLx

Taking advantage of modular design of APPFL [8], we integrated 
Globus Compute [24] and Globus Auth to establish a mechanism for 
handling remote task execution, identity management, and perform-

ing federated learning at multiple distributed clients. Fig. 2 illustrates 
the main components of our system, classified into four main layers, 
namely authentication, web-based configuration, execution and communi-

cation layer.

Authentication Layer. Globus Authentication (Globus Auth) [28] - a se-

cure service for end-user identity management is used extensively in our 
framework. Globus Auth(GA) serves as a broker for authentication, iden-

tity provider, and managing interaction between end-users. After the 
authentication step, all verified credentials will be passed through the 
execution layer where the workers execute the training process on behalf 
of the researcher. Fig. 1(a) gives an illustration. Suppose researchers A
and B are working together on a project that does not include researcher 
C. With GA, only A and B are approved to be members of the group. In 
this case, A and B have the right to access their institution’s computing 
and data management resources. During the FL, APPFLx acts as a proxy 
for the two researchers, where it is now authenticated to have the same 
right as its owner to perform FL tasks. We utilize Globus Groups (part of 
Globus Auth) to implement authorization through a group membership 
mechanism. In this model, the creation of a federation is represented as 
a Globus Group, where the group administrator invites participants to 
join. Invitations are sent to participants’ institutional email addresses, 
requiring them to authenticate with their institutional credentials. Upon 
successful authentication, users are authorized to participate in the fed-

eration based on their membership in the Globus Group established by 
the federation administrator.

Web-based Configuration Layer. The purpose of the web applica-

tion is to streamline the configuration process for users and enhance 
the user experience. We used Python Flask framework [31] for setting 
up the backend, and Globus Auth for authentication. Using a unified 
dashboard, users can provide server-side and client-side configurations. 
Client-side configuration includes data loaders, customized for their 
training data, and an identity string of Globus Compute-endpoint for 
registering their computing resource. The group administrator can then 
initiate the server-side settings, which include a list of registered clients, 

the model architecture, FL algorithm, and specify the privacy-preserving 
budget and other training hyperparameters. We also provide helper 
functions that help users check the clients’ status and aggregate training 
logs from either a regular text file or Tensorboard. Optionally, users can 
select an automated APPFLx server deployment on an ECS container 
(provided by AWS [32]), to quickly set up an experiment.

Execution Layer. The main challenge when working with multiple 
HPC systems is the heterogeneity of their cluster management and job 
scheduler. HPC administrators may or may not adopt a platform like 
Slurm [17]. To successfully execute jobs, users also need to specify 
worker configurations (e.g., default job queue, charging budget, etc.) 
which creates a great burden on the FL framework. To this end, we uti-

lize the advantage of Globus Compute [24], making it becomes the main 
backbone for network communication and executable jobs management. 
The benefit of using Globus Compute is that this burden of handling job 
execution over diverse platforms is done automatically through a uni-

versal programming interface. Globus Compute is demonstrated to work 
with wide range of computing resources, from personal computers to su-

percomputing facilities, like the Delta supercomputer (NCSA), or Theta 
(ALCF). Another benefit of Globus Compute is that the HPC configura-

tion is dedicated to the client when setting up the APPFLx clients which 
removes the need to continuously communicate with the server when 
updating configurations.

We briefly summarize how Globus Compute is adopted in APPFLx. 
Globus Compute consists of two main components: Globus Compute-

Client and Globus Compute-endpoint, which are deployed at APPFLx

server and client, respectively. Endpoints are abstract representations of 
computing resources that run in the background on the client’s machine 
on behalf of the authenticated user and handle dispatch job execution 
from Globus Compute clients on request. Meanwhile, Globus Compute 
client at APPFLx server serves as a controlling node for managing a set 
of distributed APPFLx clients, sequentially assigning training tasks dur-

ing an FL experiment. We require all servers and clients must have an 
outbound Internet connection.

Communication Layer. While Globus Compute can effectively commu-

nicate the structure of machine learning models, and training configura-

tions from server to all clients, it is not optimized for transferring large 
binary files, such as model weights. To this end, we leverage Amazon 
Web Services S3 service (AWS) [32] to accommodate this task.
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Table 1
(a) Basic info about the participating sites of Case Study 1: Biological aging predic-

tion from ECG signal experiment. (b) Statistic of the datasets used in this case study. 
(c) Testing mean square error (MSE) of the biological aging prediction from ECG 
signal models. The average column computes the average MSE across two datasets, 
weighted by the number of testing samples.

(a) Participating sites of Case Study 1: Biological aging Prediction from ECG Signal. 
Site Role Location Computing Infrastructure Dataset 
ANL Client Lemont, IL GPU Computing Cluster ECG-ANL 
Broad Client Cambridge, MA Google Cloud Compute Engine ECG-Broad 
UIUC Server Urbana, IL CPU Computing Cluster N/A 

(b) Statistics of the two datasets used in the ECG case study. 
Dataset Train Val Test Total 
ECG-ANL 64518 7905 7905 80328 
ECG-Broad 33140 4143 4143 41426 

(c) The mean square error of FL and local models. 

Training Dataset
Testing Set 
ECG-ANL ECG-Broad Average 

ECG-ANL (local training) 109.95 224.48 149.33 
ECG-Broad (local training) 225.41 38.93 161.28 
ECG-ANL+Broad - FedAvg[1] 125.00 41.70 96.35 

2.3. Model inversion attack experiment

Inversion Attack via Gradient Data Leakage. According to [3,13,33], 
gradient data from the early iterations of training are generally more 
susceptible to training data leakage. This can be explained by the fact that 
during training, the magnitude of the gradient updates generally con-

verges to zero regardless of the underlying training data. Because of 
this tendency, at later training steps, the gradient may only contain a 
small amount information from the training sample while the earlier 
ones contain a sufficient amount of information to reconstruct the pri-

vate training data on the client (since the gradients are generally still far 
from zero). Therefore, with a fixed number of training epochs, we in-

vestigate using different dataset sizes as larger datasets typically require 
more training steps of the neural networks.

Meanwhile, larger training batch size can also adversely impact the 
reconstruction quality as the gradient update representing a batch of 
training examples is an average of the training batch. Hence, inspecting 
an individual gradient corresponding to each training image for a single-

image inversion attack in a large training batch is more challenging. 
Previous works have shown that both the amount of training and batch 
size reduces the effectiveness of the gradient inversion attack [12,13, 
34–37].

Inversion Attack Baseline. The most susceptible scenario for an inver-

sion attack is when the training dataset size, training batch size, and 
number of training rounds are all set to one (referred as baseline attack). 
Hence, this setup is utilized to compare the effects of increasing the level 
of differential privacy, amount of training, and batch size (the results are 
provided in Section 3.3). When varying the level of differential privacy, 
the clip value of the Laplacian mechanism [38] is set to one while the 
value of 𝜖 gradually decreases (increasing the scale of the Laplacian noise, 
equivalently). When examining the influence of the training amount, we 
train the network model using 20 images and then perform a gradient 
inversion attack over this lightly trained model. The same process is re-

peated with 150 images in the extra training case. Finally, regarding the 
effect of training batch size, we compare the reconstruction results for 
various batch size choices (1, 10, and 50).

Details of the Attack Implementation. We use the inversion attack 
model given by [13] with an additional modification which includes a 
batch normalization penalty introduced in [36]. The general strategy 
is to initialize the inversion attack algorithm with a placeholder image, 

which will be updated continuously through an iterative inverting gradi-

ent algorithm and eventually converged to the private training data sam-

ple. Four different choices of initialization are experimented with: sam-

pling pixel values from a random Gaussian distribution [13], uniform 
distribution [3], and creating a new image by averaging several images 
over a non-overlapping data set [33]. We also investigate two common 
optimizer choices for the attack algorithm, including Adam [45] (used in 
[13]) and AdamW [39] (used in [3]). Extensive grid search amongst all 
combinations of the aforementioned image initialization, scale of total-

variation penalty [13], BN penalty [36] is necessary for each setup to 
produce pronounced reconstruction results.

3. Results

In this section, we describe APPFLx- our end-to-end, privacy-

preserving FL framework in two distinct biomedical research studies. 
Particularly, we will describe the ease of setting up secure federations 
and designing and running FL experiments, and then report the overall 
model performance.

3.1. Case study 1: biological aging prediction from ECG signal

Task Description. The electrocardiogram (ECG) is the most popular, 
simplest, and fastest exam used for the evaluation of various cardiovas-

cular diseases. Predicting biological age from the raw ECG waveform is 
beneficial for revealing an individual’s cardiovascular health [40,41]. 
In this study, we investigate the task of regressing human biological ag-

ing from 12-lead ECG waveform. A deep learning model is trained to 
reduce the mean squared error (MSE) between the predicted age and 
the subjects’ age at the date of ECG reading as ground-truth.

Datasets and FL Sites. This case study is a collaborative research 
project between Argonne National Laboratory (ANL), the Broad Institute 
(Broad), and the University of Illinois at Urbana-Champaign (UIUC). De-

tails of each FL site are provided in Table 1(a). Table 1(b) summarizes 
the statistics of the two datasets used by each client in the ECG experi-

ment. At ECG-ANL, we adopted the publicly available PhysioNet dataset 
[42] while the dataset at ECG-Broad is composed of ECG signals from 
the UK Biobank [43].

An FL experiment across multiple sites is established with APPFLx. 
In this study, a global server is hosted on a conventional CPU machine 
(specifically, Intel Core i7-6700K CPU @ 4.00 GHz) at UIUC. The first 

Computational and Structural Biotechnology Journal 28 (2025) 29–39 

33 



T.-H. Hoang, J. Fuhrman, M. Klarqvist et al. 

Table 2
(a) Basic info about the participating sites of Case Study 2: COVID-19 Detection on Chest 
Radiographs (CXR). (b) Statistics of the datasets used in the COVID-19 chest X-ray image 
recognition experiment. Numbers in parentheses indicate the number of positive (+) and neg-

ative (−) samples. (c) AUC score of the COVID-19 chest X-ray image recognition models.

(a) Participating sites of Case Study 2: COVID-19 Detection on Chest Radiographs (CXR). 
Site Role Location Computing Infrastructure Dataset 
ANL Client Lemont, IL GPU Computing Cluster MIDRC 
UChicago Client Chicago, IL GPU Computing Cluster UChicago 
UIUC Server Urbana, IL CPU Computing Cluster N/A 

(b) Statistics of the two datasets in the COVID-19 detection on CXR case study. 
Dataset Train Val Test Total 
MIDRC 9867 (4226+/5641-) 2056 (925+/1131-) 2081 (932+/1149-) 14004 
UChicago 26047 (4226+/23226-) 5569 (587+/4982-) 5619 (637+/4982-) 37235 

(c) AUC comparison between local and FL models. 

Training Dataset
Testing Set 
MIDRC UChicago 

MIDRC (local training) 0.80 [0.78, 0.82] 0.56 [0.54, 0.58] 
UChicago (local training) 0.59 [0.57, 0.62] 0.67 [0.65, 0.69] 
MIDRC+UChicago - FedAvg [1] 0.69 [0.67, 0.71] 0.67 [0.65, 0.69] 
MIDRC+UChicago - FedAvg + Fine Tuning 0.79 [0.77, 0.80] 0.84 [0.83, 0.84] 

client utilizes a computing cluster with a single NVIDIA GeForce RTX 
3090, hosting and performing training on the ECG-ANL dataset. Mean-

while, the second client at Board Institute deploys our platform on a 
GPU Google Cloud Compute Engine.1 This setup demonstrates the flexi-

bility of APPFLx in leveraging a wide range of heterogeneous computing 
environments (e.g., local computing clusters and cloud computing ser-

vices).

Regression Model and FL Setup. As a baseline model, we employ a 
ResNet34-styled [44] architecture. Each ECG channel is normalized to 
have zero mean and unit standard deviation. For the FL procedure, we 
use FedAvg [1] in our experiment for a total of 30 federation rounds. 
During each training round, the local models of all clients are optimized 
in 2 local epochs before being aggregated to the global model. We use 
Adam optimizer [45] with an initial learning rate of 0.003 and a decay 
scheduler by a factor of 0.975.

Result - FL versus Local Training. Table 1(c) gives the MSE on the 
test set of models trained on individual (rows 1-2) and combined (row 
3) datasets. We observe that models trained on the combined dataset re-
markably outperform ones trained on the individual datasets in average. 
This highlights the benefit of FL which, allows the training of a ma-

chine learning model on multiple datasets. Another noticeable outcome 
is that FL models typically achieve higher generalization rate when be-

ing cross-evaluated on unseen samples from out-of-distribution datasets.

3.2. Case study 2: COVID-19 detection on chest radiographs

Task Description. One of the domains that may require increased 
security or privacy when building AI models is medical imaging. Here, 
allowing for open access to medical images can be impossible, partic-

ularly considering privacy concerns related to attack models and po-

tentially inconsistent or ineffective data de-identification requirements 
across different local sites (e.g., face shearing technology). The COVID-

19 pandemic served as a prime example of a use case for APPFLx

implementation; many institutions were interested in contributing to 
aggregated datasets for use in developing medical imaging-based AI 
models for COVID-19 detection, differential disease diagnosis, and other 
radiological tasks. Despite good intentions, several complications arose 

1 https://cloud.google.com/products/compute.

through “Frankenstein” datasets, biased algorithms, and required an ex-

tensive time to open source [46]. Many of these obstacles could have 
been alleviated if a privacy-preserving FL system were available. Thus, 
we provide COVID-19 detection on chest x-ray images (CXR) as a use 
case to evaluate our proposed system. Clinically, the most common 
methods of COVID-19 detection are non-imaging exams (e.g., antigen 
or RT-PCR exams); however, imaging could play a role in differential 
disease detection upon image acquisition in the future if non-imaging 
tests are less readily available or no longer standard practice.

Datasets and FL Sites. We set up a two-site training for this case study, 
detailed in Table 2(a). The first client hosts the publicly available CXR 
dataset from the Medical Imaging and Data Resource Center (MIDRC).2

Initiated in 2020 to combat the pandemic, MIDRC is a multi-institutional 
collaborative initiative in medical imaging through data sharing, having 
already scraped over 300,000 medical imaging studies. This comprehen-

sive dataset contains digital radiograph images, COVID test results, and 
demographic information collected from multiple hospitals. The sec-

ond client holds a private dataset that was collected at the University 
of Chicago (UChicago). The UChicago dataset was collected as part of 
the University of Chicago Center for Research Informatics (CRI) COVID-

19 Datamart in conjunction with the Human Imaging Research Office 
(HIRO). The two datasets’ train-test splitting scheme, statistics, and the 
number of positive and negative samples used in this experiment are 
reported in Table 2(b).

Classification Model and FL Setup. This case study demonstrates 
a simple transfer learning approach to CXR data. We fine-tune a 
ResNet18 [44] model pre-trained on ImageNet [47]. The last soft-

max layer is modified to match the binary classification task (i.e., 
COVID-19 positive and negative). Further, other recent publications 
have investigated the relevance of personalized FL [48–50], or the de-

velopment/improvement of FL models for performance by individual 
clients. We incorporate personalized FL in this study through additional 
local fine tuning on a small subset of labeled data (here, we adopted the 
validation set) from both the MIDRC and UChicago clients for an addi-

tional 40 epochs. Notably, for this fine-tuning step, only the trainable 
parameters of the batch normalization layers [51] are updated. This ad-

justment specifically targets the sensitivity of these layers to local data 

2 https://www.midrc.org/.
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Fig. 3. Cross-site evaluation result of the COVID-19 detection on chest radiographs (CXR) case study. The ROC curve (left) and confusion matrices (right) of various 
COVID-19 CXR detection models: local training on a single MIDRC and UChicago (UC) dataset; fine tuned model with a baseline comes from FL (FedAvg [1]) on 
the two datasets (MIDRC + UC-ft) using our APPFLx. We demonstrated a superior performance when an FL model serves as a foundation model for fine tuning a 
client-specific dataset.

statistics. Similar strategies have been implemented in other domain 
adaptation approaches [52,53].

Using APPFLx, we establish the federation across multiple insti-

tutes. For simplicity, we adopt the common FedAvg [1] algorithm for 
the global aggregation. Two Globus Compute endpoints (one for each 
dataset, representing two distinct clients) are installed at UChicago 
while the global server is hosted at UIUC. The clients securely store 
their dataset, and only reveal the data loaders to the server. Once the 
federation is created, the server can automatically facilitate the training 
and cross-site evaluation process. During training, each client performs 
two local updates before being integrated into the global model. We 
repeat this process for a total of 40 global FL aggregation rounds. For 
hardware requirements, the center server only requires a CPU machine, 
while most of the heavy-computing tasks are performed locally on two 
GPU clusters of the University of Chicago (HPE Superdome Flex NUMA 
computation server with 2 NVIDIA Tesla V100 32 GB GPUs).

Result - FL versus local training. All models are evaluated on the 
clients’ test set using the cross-site validation feature of APPFLx. We 
separately plot the ROC curves (Fig. 3-left) and confusion matrices 
(Fig. 3-right) then compute the corresponding areas under the ROC 
curve (AUC), confidence interval (Table 2(c)) when testing them on 
the two datasets in the task of positive and negative COVID-19 CXR 
detection. We compute the AUC as the main evaluation metric for dis-

cussion. Over the two datasets, we observe that while models trained on 
a single dataset (rows 1-2) achieve satisfactory performance when eval-

uating on test sets with the same distribution, the performance drops 
significantly on the test set of other sites (e.g., 0.80→ 0.56 for the model 
trained on MIDRC dataset and 0.67 → 0.56 for the model trained on 
UChicago). Meanwhile, the model trained in FL settings with a com-

bined MIDRC + UChicago dataset (row 3) can overcome this challenge 
in single-dataset models and provide a more stable performance. No-

tably, for the MIDRC dataset, the performance of the FL model (0.69) 
was significantly reduced in comparison to the local model (0.80). This 
result indicates joint training with the UChicago dataset with a large dis-

tribution gap can possibly downgrade the performance of the FL model.

However, our investigation of fine tuning on a small subset of the la-

beled dataset at each site for personalized FL through APPFLx (row 4) 
demonstrated superior performance, achieving comparable performance 
to the locally-trained MIDRC model and significantly outperforming the 
local UChicago model. This suggests that the baseline model provided 
by the FL algorithm serves as a better foundation than the original 
ImageNet-trained [44,47] model for addressing our task of COVID-19 
detection. This has potential practical implications in how FL is de-

ployed, particularly in scenarios with differing data distributions across 
FL clients as in our case study. Specifically, in such scenarios when a sin-

gle model cannot effectively achieve high performance simultaneously 
across clients, personalized FL as deployed in our APPFLx scheme could 
play a significant role in the development of improved models.

3.3. Model inversion attacks and privacy-preserving demonstration on case 
study 2

Privacy-preserving, an essential part of a trustworthy and secure FL, 
is one of the most important components in our APPFLx. In this section, 
we take Case Study 2 (Section. 3.2) to demonstrate the risk of user 
privacy leakage via an inversion attack simulation and the advantage of

APPFLx privacy-preserving scheme to mitigate this critical issue.

Model Inversion Attacks and Privacy-Preservation. Recent works 
[12,13,34–37] have examined a scenario where an attacker has access 
to the local client gradient updates during FL processes. Alarmingly, the 
gradients information communicated between the clients and the server 
during training or even after training can reveal information about 
the training set from which an iterative gradient inversion algorithm 
can reasonably reconstruct private local data. Thus, we evaluate the 
privacy-preserving scheme implemented by the APPFLx framework to 
qualitatively and quantitatively measure the extent of information leak-

age through gradients by performing an inversion attack during the FL 
process with and without our privacy-preserving scheme.

Experimental Setup. Following the same setting, we study a ResNet18 
[44] model pre-trained on ImageNet [47], which consumes a grayscale 
input image of size 224×224 as input. For a fair comparison with previ-
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Fig. 4. Reconstruction results of gradient inversion attacks with various differential privacy budgets (top row) and training settings (bottom row). (a) is the baseline 
attack result. (b)-(d) show the effect of applying increasing levels of differential privacy, from (b), the weakest level of differential privacy to the strongest in (d). 
(e) and (f) show the effect of using gradients from models with increasing amounts of training. (g) and (h) show the impact of increasing the batch size on the 
reconstruction quality. We also compare the corresponding MSE and PSNR for all settings (a)-(h) (bar charts, last two columns). Both metrics indicate a clear decline 
in reconstruction quality when increasing the differential privacy, while increasing the training amount or the batch size has little effect on the reconstruction quality.

Table 3
A summary of the key technologies incorporated in APPFLx.

Technology Role

APPFL Supporting a variety of synchronous and asynchronous FL algorithms, aggregation, and 
privacy-preserving schemes

Globus Authentication Seamlessly authorizing user’s identities, based on their institute’s credentials before 
establishing a federation

Globus Compute Executing computational functions on diverse heterogeneous computing environments 
(e.g., laptops, clusters, clouds, or supercomputers, etc.)

AWS/Globus Transfer Securely transferring model’s parameters across sites

ous work [3], the publicly available dataset [54] is used in our inversion 
attack experiments. Other setups follow the setting described in [12], 
and the effect of differential privacy when varying the clip value (𝑐), 
noise level (𝜖), amount of training, and the training batch size (𝑏) on 
the reconstructed image is investigated.

Result - Model Inversion Attack. Our model inversion attack results 
with increasing differential privacy preserving budget are illustrated in 
Fig. 4-top. (a) provides the baseline result (described in Section 2.3), as 
the most vulnerable case, and without our privacy-preserving scheme on 
a single-sample training dataset with batch size 𝑏 = 1. (b) uses the same 
setting as (a) except Laplacian noise with clip value 𝑐 = 1 and 𝜖 = 0.1
is added to tackle the inversion attack (privacy-preserving scheme). We 
observe that reconstruction quality is significantly downgraded com-

pared to (a). In (c) and (d) we further increase the Laplacian noise (by 
decreasing 𝜖 = 0.05 to 𝜖 = 0.01), respectively. Here, the reconstructed 
image is completely unrecognizable as CXR. For quantitative evaluation, 
the mean squared error (MSE) and peak signal-to-noise ratio (PSNR) 
for the increasing privacy-preserving levels (top row, right bar charts) 
showcases a clear decline in reconstruction quality, indicating the benefits 
of incorporating the privacy-preserving scheme of APPFLx.

Meanwhile, (Fig. 4-bottom) studies the effects of other training fac-

tors on the inversion attack without applying the differential privacy 
scheme. In (e) and (f), light training and extra training of the same 
ResNet 18 [44] model are compared. In the light training mode, the 
model explores 20 images, while this number increases to 150 in the 
extra training case. In both scenarios, the amount of gradient informa-

tion leakage is still remarkable (in contrast with (c) and (d), (e) and 
(f) have comparatively low MSE and high PSNR values, and are only 

worse than (a)). Additionally, we further study the effect of increasing 
training batch size with 𝑏 = 10 (g) and 𝑏 = 50 (h). The MSE and PSNR 
metrics (bottom row, right bar charts) verify the effect of increasing 
batch size. Surprisingly, in both cases, the image reconstruction is still 
recognizable given that the gradient update from a large batch of im-

ages contains much less image-specific information than a single-image 
batch (as in (a)) In sum, these results indicate that increasing the amount 
of training or changing the batch size, up to some extent, can reduce the 
reconstruction quality. However, that in itself cannot completely elim-

inate the role of privacy-preserving schemes, and privacy-preserving is 
always important at every stage of the training process.

4. Discussion

4.1. APPFLx - a platform for FL in biomedical research

Rapid FL Experiment Deployment. As far as we are aware, APPFLx is 
the only FL framework that has end-to-end security and is compatible 
with the workflow of research organizations (Section 2.1). In the two 
case studies (Section 3.1, 3.2), we showcase a rapid deployment of this 
platform for conducting FL experiments across four research institutes 
(ANL, UChicago, UIUC, and Broad). Table 3 briefly summarizes the key 
technologies that drive the main functionality of APPFLx. There are no 
trade-offs in performance when using APPFLx compared to other popu-

lar FL frameworks. In terms of functionality, there are no requirements 
for advanced knowledge in AI or distributed computing. The framework 
provides many training utilities to lower the barrier for non-technical 
users, and easy to use privacy-preserving ability for rapid deployment 
and experimentation.
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Noticing the Cross-dataset Generalizability with FL. Understanding 
model generalizability is an important task in machine learning. Us-

ing APPFLx, we demonstrated this process in action by assessing the 
single-dataset model’s generalizability on cross-site evaluation and how 
FL comes into place in two real-world case studies. By enabling an 
easy and trustworthy data-sharing mechanism, models trained with FL 
achieve better generalizability. Our result further highlights the need to 
adopt FL techniques when experimenting with machine learning models 
in biomedical research. APPFLx, flexible design framework, becomes a 
convenient tool for researchers to quickly set up FL experiments, ana-

lyzing and improving the model generalizability across multiple sites.

FL on Clients with Severe Distribution-shift. Utilizing a large pool 
of training data, FL models are typically expected to be well generalized 
and capable of achieving supreme performance on datasets from both 
cross-site and same-site distributions. However, with large distribution-

shift, and a limited number of participating FL sites demonstrated in 
our case study, their performance still lags behind the locally trained 
models when evaluating on same-site testing sets. Notice that this is a 
common phenomenon in FL, which is even more likely to happen in 
biomedical research. Fortunately, this shortcoming has been partially 
addressed in several previous personalized FL research [48,49,55,56], 
and in the Case study 2 (Section 3.2), a fine-tuning scheme has been 
adopted to overcome this drawback.

4.2. Key advantages of APPFLx

Privacy-preserving for FL training. Qualitative and quantitative re-

sults across all three inversion attack experiments show that adopting a 
differential privacy scheme is crucial all the time. Using a simple attack 
model on the leakage of gradient communication between server and 
client can easily violate the privacy of user data. We see that in a realis-

tic setting, where the data batch size gets larger and after some training 
has been conducted on the target network, stealing private training in-

formation from clients is still possible. Fortunately, with a differential 
privacy scheme, even the most susceptible setting of batch size one and 
using one training image only can tear down the inverse relation of 
gradient sent by the client and the underlying training data, thus elimi-

nating the chance of data leakage. The capability of APPFLx framework 
allows all FL participants to enable the privacy-preserving scheme when 
needed, creating a trustworthy FL environment for conducting cross-institute 
biomedical research.

Latency and Communication Efficacy. The authentication step is per-

formed once, at the beginning of creating the federation. Hence, the 
latency for this step is minimal, compared to the entire FL process. With

APPFLx, users can freely change the aggregation algorithm, depend-

ing on the use case and resource constraints. For instance, one can use 
asynchronous FL [57,58] when there is a computing power mismatch 
between participating clients. The communication between server/par-

ticipant clients (or computing nodes) is dedicated to the Globus Com-

pute. The function execution at endpoints via FaaS (Function as a Ser-

vice) structure is an industrial standard and has been popularly adopted 
in many use cases.3 See [59] for a recent analysis. For a deeper tech-

nical comparison of latency and communication efficacy, we refer the 
readers to visit Section IV.A. of [60].

Comparison to Prior Work. From the aspect of identity management, 
many FL frameworks [6,8] verify digital entities involved in FL process 
using a common trusted certificate authority (CA) and an HTTPS server 
for listening and signing requests. Other methods also extend it into a 
blockchain-based and decentralized system using smart-contract [61]. 
While these approaches can verify the ownership of a public key by a 
named subject, there is a lack of correspondence between virtual and 
real-world identity. Our APPFLx takes a step further by coupling digital 

3 https://www.globus.org/user-stories.

FL clients with researchers’ identities. Note that this single-time authen-

tication governs all aspects of an FL process, including granting access to 
sensitive data, and allocating computing resources, which are naturally 
controlled by the researcher’s identity. To the best of our knowledge, 
this is the first FL framework that enables this ability. Readers are en-

couraged to visit Table I of [60] for an in-depth comparison of APPFLx

and other popular open-source FL frameworks.

Most of the aforementioned FL frameworks typically target edge de-

vices [62] as their main deployment target. Some frameworks [9,10,63] 
support leveraging GPUs for hardware acceleration which supports the 
development of FL applications that require real-time response and cater 
to applications that compute intensive. However, there is an ongoing 
need to develop FL technologies that can leverage heterogeneous high-

performance computing (HPC) resources, similar to [10,63]. We ad-

dress these requirements with Globus Compute integration to the APPFL

toolkit. The Globus Compute integration allows to seamless leverage of 
traditional tightly-coupled high-performance computing resources and 
cloud computing resources that increase the overall adoption scenarios.

4.3. Limitations and future work

The initial setup of training sites for clients requires experience 
in configuring Globus Compute endpoints and going through several 
platforms like Globus, which may be an obstacle in some situations. 
Client-server communication is tightly intertwined with Globus Com-

pute, creating a substantial dependence on this service and may limit 
the scalability of APPFLx when increasing the number of clients. While 
Globus has been adopted by several organizations, some organizations 
may be restricted to using products that use more common authentica-

tion standards. Future work includes exploring alternative authentica-

tion standards prevalent in the industry such as OAuth2 or OpenID. In 
addition, a more complete investigation of the system’s security is neces-

sary to recognize possible system vulnerabilities and thoroughly assess 
the privacy-preserving capabilities of APPFLx.

APPFLx is one of the few FL frameworks that offer a web user 
interface, simplifying the initial steps of the FL setup process. The in-

tegration of Globus Auth enhances user-friendliness by allowing users 
to log in with their institutional credentials directly through the same 
user interface. Despite our best efforts, some steps may still pose chal-

lenges for users without technical expertise. We will keep improving 
the UI/UX and documentation of APPFLx in the future as the project 
evolves and more user feedback is available. In short, the web platform 
can handle user authentication and automatically launch the server for 
clients, streamlining the most challenging steps of the setup process. 
The APPFLx documentation has been continuously updated to reflect 
the latest changes in the framework.

5. Conclusion

In this paper, we propose the integration of Globus compute to

APPFL, namely APPFLx. This is a free, open-source high-performance 
federated learning platform that is specialized for facilitating cross-

institutional collaboration on sensitive medical data. The two key nov-

elties of our framework include organizational identity management and 
task execution strategy on heterogeneous computing resources. We further 
demonstrate the use of APPFLx in two real-world case studies: biolog-

ical aging prediction from ECG signal and COVID-19 chest x-ray image 
recognition. In sum, our framework successfully coordinates a federated 
learning process across four research institutes.
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