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Abstract—
Recent advancements have positioned AI, and particularly

Large Language Models (LLMs) as transformative tools for
scientific research, capable of addressing complex tasks that
require reasoning, problem-solving, and decision-making. Their
exceptional capabilities suggest their potential as scientific re-
search assistants, but also highlight the need for holistic, rigorous,
and domain-specific evaluation to assess effectiveness in real-
world scientific applications. This paper describes a multifaceted
methodology for Evaluating AI models as scientific Research
Assistants (EAIRA) developed at Argonne National Laboratory.
This methodology incorporates four primary classes of evalua-
tions. 1) Multiple Choice Questions to assess factual recall; 2)
Open Response to evaluate advanced reasoning and problem-
solving skills; 3) Lab-Style Experiments involving detailed anal-
ysis of capabilities as research assistants in controlled environ-
ments; and 4) Field-Style Experiments to capture researcher-
LLM interactions at scale in a wide range of scientific do-
mains and applications. These complementary methods enable
a comprehensive analysis of LLM strengths and weaknesses
with respect to their scientific knowledge, reasoning abilities, and
adaptability. Recognizing the rapid pace of LLM advancements,
we designed the methodology to evolve and adapt so as to ensure
its continued relevance and applicability. This paper describes
the methodology’s state at the end of February 2025. Although
developed within a subset of scientific domains, the methodology
is designed to be generalizable to a wide range of scientific
domains.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Recent advances in Large Language Models (LLMs) have
greatly broadened conceptions of what AI may be able to
accomplish in the near future. Models such as OpenAI’s
GPT O1 [1], Google’s Gemini [2], and Anthropic’s Claude

σCorresponding Authors: cappello@anl.gov, smadireddy@anl.gov

[3] are transforming traditional natural language understand-
ing (NLU) tasks like summarization, information extraction,
translation, and classification with enhanced contextual depth
and adaptability. They are also exhibiting promising potential
beyond NLU, with measurable progress on tasks such as math-
ematical problem solving, multi-step reasoning, and symbolic
logic—and achieving significant milestones such as passing
the Uniform BAR exam and medical licensing exams [4]. Such
achievements highlight their potential to emulate abstraction,
logical deduction, and domain-specific expertise. This evolu-
tion from NLU towards addressing complex, domain-specific
challenges with minimal human guidance has propelled LLMs
into a pivotal role for next-generation AI systems, positioning
them as a cornerstone technology in the quest toward more
general-purpose AI, and potentially, artificial general intelli-
gence (AGI).

Building on these advancements, scientists are now begin-
ning to assess separately the suitability and potential impact of
LLMs on a wide variety of specific tasks within specific fields
of research and discovery [5]. This work has led to exciting
demonstrations of LLMs as transformative tools for such
tasks predicting molecular properties [6], uncovering genomic
patterns [7], interpreting astrophysical data [8], solving mathe-
matical problems [9], and even creating and manipulating tools
for simulations and analysis [10].

These developments have also led scientists to envision the
use of LLMs and transformers as research assistants that can
not only automate individual research tasks but also engage
with scientific problems in depth by taking advantage of
growing multi-step reasoning skills that complement their ex-
panding contextual understanding. This vision suggests a new
holistic approach in which LLMs interface with relevant tools,
operate (quasi-)autonomously on research challenges, identify
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TABLE I
OUR PROPOSED METHODOLOGY FOR EVALUATING LLMS AS SCIENTIFIC ASSISTANTS COMBINES FOUR COMPLEMENTARY TECHNIQUES, LISTED IN

COLUMNS 2–5 BELOW, TO ASSESS THEIR CAPABILITIES. PURPLE TEXT INDICATES PRIOR CONTRIBUTIONS BY THE AUTHORS, BLUE TEXT NEW
CONTRIBUTIONS IN THIS PAPER, AND BLACK TEXT METHODS ADAPTED FROM EXISTING WORK THAT WE INCLUDE FOR A COMPLETE APPROACH.

relevant literature, summarize findings, propose experimental
designs, and even autonomously run, and generate insights
from, physical and computational experiments [11], [12].

We identify two main challenges that must be addressed
before LLMs can be broadly adopted by the scientific com-
munity as effective and trustworthy research assistants. First,
researchers need ways to measure and evaluate LLM capabil-
ities in the different stages and tasks of the scientific research
process. Such evaluations can both guide LLM applications
and integration with other tools, and provide benchmarks
for developers to improve their LLMs and supporting sys-
tems. Second, as with other research tools and techniques,
researchers need ways to assess confidence in the results
produced, in order to decide whether or not they are trust-
worthy. A comprehensive, rigorous, accurate, transparent and
community-approved evaluation methodology is necessary to
address these two challenges.

This paper introduces work undertaken at Argonne Na-
tional Laboratory within the AuroraGPT project to develop
a research methodology that addresses these two challenges.
The paper makes three main contributions: (i) a holistic
methodology for LLM evaluation; (ii) two novel evaluation
techniques (lab-style and field-style experiments); and (iii)
improvements in existing state-of-the-art evaluation techniques
for the specific role of research assistant.

First, we propose an overarching methodology for assessing
the scientific knowledge, skills, and safety of AI models. As
shown in Table I, this methodology encompasses four com-
plementary techniques: 1) Multiple Choice Question (MCQ)
Benchmarks, which measure factual recall and reasoning ca-
pabilities in structured formats to provide fast assessment of
a model’s breadth of knowledge; 2) Open Response Bench-
marks, which test a model’s ability to generate detailed open-
ended responses and write or debug code for computational
tasks giving a fast but more in-depth analysis of knowledge;
3) Lab-style Experiments, simulating various tasks in the

end-to-end research process to assess model performance on
those tasks and thus to provide understanding of real-world
strengths and weaknesses; and 4) Field-style Experiments,
capturing real-world interactions at scale to analyze user needs,
model strengths, and broad capability trends, and to diagnose
areas and sources of weakness in realistic scenarios. We also
consider trustworthiness, i.e., alignment with ethical and safety
standards, and discuss the Software Infrastructure required to
implement these methodologies effectively.

Second, our application of “lab-style” and “field-style”
techniques to LLM evaluation represents a novel approach
when conducted at this scale and with such a diversity of
topics with practicing scientists. These techniques go beyond
existing testing methodologies: they assess in real situations
the suitability of LLMs for open and unstructured problems
which are both common in research and difficult to assess with
either MCQs or open-response questions.

Third, we present improvements to techniques used within
the community, including a multi-domain AI for science
benchmark, called “AI4S,” and the Skills, Trust, and Relia-
bility (STaR) evaluation framework, a scalable software eval-
uation infrastructure. We also summarize and contextualize
the research done by our team in domain-specific benchmarks,
open response benchmarks, and uncertainty quantification, and
note where we employ tools from other teams to complete our
holistic evaluation methodology.

Together, these efforts aim to establish a robust methodology
for evaluating the capabilities of LLMs as trusted scientific
assistants. In the following sections, the collection of eval-
uations and scoring was based on voluntary participation of
researchers and contributors.

The following sections describe the related work and the de-
tails of our proposed methodology. The last section discusses
next steps.



II. RELATED WORK

Research on LLM evaluation encompasses various tech-
niques relevant for the evaluation of LLMs as research as-
sistants. Here we discuss that work and note gaps that our
proposed methodology attempts to fill.

A. Multiple-choice Question (MCQ) Benchmarks

MCQ benchmarks offer a structured framework for as-
sessing LLM performance across various domains. Notable
examples are Massive Multitask Language Understanding
(MMLU) [13] and MMLU-PRO [14], which evaluate general
knowledge and reasoning in more than 50 subjects, including
humanities, sciences and engineering. In the realm of mathe-
matical reasoning, GSM8K [15], GSM1K [16], and MATH
[9] are prominent. GSM8K and GSM1K addresses grade-
school level problems, while MATH focuses on high-school
and competition-level questions. Both benchmarks have been
enhanced with multiple-choice adaptations to streamline eval-
uation and minimize ambiguity in model outputs [17]. Other
significant MCQ benchmarks include ARC [18], which tests
scientific reasoning, and HellaSwag [19], which challenges
models with complex commonsense reasoning scenarios that,
while easy for humans, are especially hard for state-of-the-
art models. In the field of chemistry, MCQ benchmarks
include MoleculeQA [20], which comprises 61,574 MCQs,
each with three distractors, focusing on factual information
about molecules; MolPuzzle [21], a multimodal benchmark
with over 23,000 question-answer pairs, structured with inter-
linked sequential sub-tasks, each providing multiple choices;
and ChemBench [22], with over 2700 questions, primarily
MCQs. Few of the many other MCQ benchmarking efforts
in the literature are science-domain focused and validated,
and as LLM capabilities improve, there is an increasing need
to generate more difficult questions and leverage synergies
between domain expertize and LLM judges. The multi-domain
benchmark AI4S that we present below is an attempt towards
that end.

B. Open Response Benchmarks

While MCQ benchmarks restrict responses to predefined
options, Open Response benchmarks require that LLMs pro-
duce detailed, unconstrained outputs that can be evaluated
for coherence, accuracy, and relevance. Notable examples
include NarrativeQA [23], which challenges models to gen-
erate summaries or interpret longer narratives, and HotpotQA
[24], which demands multi-hop reasoning with synthesized
answers derived from multiple sources. Similarly, HybridQA
[25] combines textual and tabular data, requiring LLMs to
provide coherent and comprehensive answers. For mathe-
matical reasoning, GSM8K [15] and MATH [9] test model
ability to solve complex, multi-step problems with free-form
solutions. In chemistry, benchmarks have been developed to
assess LLM open-response capabilities. ChemistryQA [26]
comprises 4500 complex questions that require reasoning and
calculations, evaluating model ability to generate detailed,
accurate responses. ChemLLMBenchmark [27] consists of

eight practical chemistry tasks that necessitate understanding,
reasoning, and explanatory skills, with evaluations focusing on
the quality and depth of model-generated answers. The open-
domain TOMG-Bench [28] molecule generation benchmark
comprises tasks such as molecule editing, optimization, and
customized generation, each requiring models to produce
specific molecular structures or modifications based on textual
descriptions.

Recent advancements have expanded the scope of open-
response benchmarks to address specific evaluation challenges
and domains. The Open-LLM-Leaderboard (OSQ-bench) [29]
transitions from multiple-choice formats to open-style ques-
tions, eliminating issues like selection bias and random guess-
ing, while emphasizing models’ ability to generate coherent,
contextually accurate answers. FrontierMath [30] presents
hundreds of exceptionally challenging mathematics problems
that require models to generate detailed solutions, testing
advanced reasoning and problem-solving skills. Similarly,
Humanity’s Last Exam [31] crowdsources complex questions
from experts across fields to evaluate how closely LLMs ap-
proximate expert-level capabilities, highlighting their potential
and limitations in addressing real-world challenges.

A difficulty with Open Response benchmarks is that eval-
uating their responses is inherently challenging due to their
unstructured nature, requiring time-intensive analysis, subjec-
tive interpretation, and careful management of biases and data
overload. These challenges are closely tied to uncertainty
quantification (UQ), as the variability in interpretations and
outcomes necessitates robust techniques to quantify and mit-
igate uncertainty in the evaluation process, ensuring reliable
and consistent insights. In addressing these challenges, it is
also important to keep track of multiple model versions and
to use them consistently [32], so as to enable reproducibility
[33].

C. Lab-Style Experiments

Laboratory-style Experiments with LLMs involve controlled
settings in which researchers systematically evaluate model
performance on specific tasks, enabling precise measurement
of capabilities and limitations. In chemistry, for instance,
[34] developed Coscientist, which employs LLMs to plan
and execute experimental procedures based on simple human
prompts, and evaluated its performance by assigning it the
task of identifying synthetic procedures for seven molecules
of varying complexity. Similarly, [35] proposed an approach
that combines LLMs with task and motion planning to trans-
late natural language instructions into robot-executable plans,
evaluating their system through simulations in a box-packing
domain. In behavioral strategy research, [36] reproduced hu-
man laboratory experiments using LLMs and compared their
performance to human participants to analyze the extent to
which LLMs can emulate human decision-making processes.
These laboratory-style experiments provide valuable insights
into applications and can inform the development of more
advanced AI systems. However, comprehensive end-to-end
evaluations of LLMs on scientific tasks, similar to human



performance assessments, remain scarce. Such evaluations are
crucial to understanding how LLMs can mimic or augment
human researchers in tackling complex scientific challenges.

D. Field-Style Experiments

Field-style Experiments, also referred to as “in-the-wild”
studies, involve observing and analyzing user interactions
with LLM in real-world settings. This approach contrasts
with controlled Lab-style Experiments by capturing non-
predefined user interactions with LLMs, providing valuable
insights into how LLMs perform across diverse, unstructured
tasks. Recent studies have leveraged this methodology to
assess various aspects of LLM performance. For instance,
WildBench [37] is designed to evaluate LLMs using real-
world user interactions, enabling a comprehensive analysis of
model capabilities in practical scenarios. Similarly, HaluEval-
Wild [38] was designed to evaluate hallucinations in LLMs
by collecting challenging user queries from real-world inter-
actions. Shen et al. [39] conducted a study characterizing and
evaluating user-LLM interactions, providing insights into user
behavior and model performance and highlight the importance
of understanding user needs and expectations to improve LLM
utility and user satisfaction. While such analyses are currently
lacking in scientific domains, developing field-style experi-
ments specifically for scientific research presents a significant
opportunity to provide critical insights into how researchers
interact with AI models, thereby enhancing the creation of AI
assistants tailored to scientific inquiry.

E. Safety Evaluation

In addition to the general-purpose evaluations discussed
above, comprehensive evaluations must rigorously assess
alignment with ethical standards, robustness against jail-
breaks, and adaptability to complex real-world scenarios [37],
[40]. Safety evaluations are also cross-cutting :MCQs, Open-
Response benchmarks, and Lab-style and Field-style Experi-
ments. SafetyBench [41], for example, employs 11,435 MCQs
in seven categories (e.g., bias, toxicity) to systematically
test model adherence to ethical and safety standards in both
English and Chinese. Similarly, SALAD-Bench [42] proposed
4000 MCQs, and part of the larger dataset structured into a
detailed hierarchy of 6 domains, 16 tasks, and 66 categories.
BigBench [43] has a subset of its tasks focused on safety
evaluation in regards to toxicity, bias and truthfullness tat are
MCQs. However, there has not been a focused MCQ-based
safety evaluation benchmarks that take the nuances aspects
of science, especially high consequential ones such as the
the chemisty, biology, radiation, and nuclear (CBRN). We
discuss one such effort on risks in chemistry in this work.
Open-response evaluations, such as those in DecodingTrust
[44] and TrustLLM [45], examine nuanced safety aspects, in-
cluding hallucinations, privacy violations, and machine ethics.
TrustLLM evaluates LLMs across six dimensions, including
fairness and safety, using over 30 datasets to identify crit-
ical safety gaps, while DecodingTrust introduces an eight-
dimensional framework that probes issues like toxicity and

ethical reasoning, with results published on a widely accessible
leaderboard for transparency. However, such evaluations for
scientific use cases are scarce [40] and thus provide an
opportunity to develop them in the future.

The safety red-teaming methodologies can be effectively
interpreted along the lines of lab-style and field-style exper-
iments. In lab-style red-teaming, researchers interact directly
with LLMs and systematically introduce adversarial prompts
to identify vulnerabilities such as biases, hallucinations, or
ethical compliance issues. For example, [46] present a frame-
work for red-teaming experiments on LLMs by generating
numerical questions and puzzles to evaluate the models’ per-
formance on elementary calculations and algebraic tasks. This
approach provides detailed feedback at each step, allowing
iterative improvements and a deeper understanding of model
limitations. In contrast, field-style red-teaming assesses LLMs
by analyzing large-scale human interactions in real-world
environments. This method captures diverse and unpredictable
user inputs, offering insights into how models perform “in the
wild.” For instance, [47] discuss automating red-teaming by
training a separate red team LLM with reinforcement learning
to generate test cases that maximize the chance of eliciting
undesirable responses from the target LLM. This large-scale
approach identifies practical weaknesses and vulnerabilities
that may not surface in controlled lab settings, contributing
to model robustness across varied real-world scenarios. By
employing both lab-style and field-style red-teaming strategies,
researchers can comprehensively evaluate and enhance the
safety, reliability, and ethical performance of LLMs across
different contexts. That said, significant work still needs to
be done in designing such experiments for safety and trust
scenarios in science.

III. ESTABLISHING A METHODOLOGY TO EVALUATE
LLMS AS RESEARCH ASSISTANTS

The overarching objective of using LLMs as research assis-
tants is to accelerate the research process.

In Table II, we present seven tasks commonly performed
by researchers to solve a scientific problem: (i) posing and
formulating a research question; (ii) if needed, conduct-
ing initial, preliminary experiments, observations, simulation,
and/or database accesses to confirm the pertinence of the
research question; (iii) performing literature search to identify
related work; (iv) generating potentially multiple hypotheses
(or research directions) to address the research question; (v)
designing experiments, observations, and/or simulations to test
the hypotheses; (vi) analyzing the resulting data to validate
or invalidate the hypotheses; and (vii) writing a report about
findings. Each of these seven tasks requires deep reason-
ing, contextual understanding, and iterative problem solving.
The scientific community needs confidence that LLMs are
proficient in these tasks if they are to adopt them widely
as research assistants. Thus a thorough and comprehensive
evaluation methodology is required that can produce a rigorous
assessment of LLM strengths and weaknesses in each task.



TABLE II
SKILLS EVALUATED BY EACH OF THE EVALUATION TECHNIQUES. LAB-STYLE EXPERIMENTS FOCUS ON DETAILED ANALYSIS IN CONTROLLED

ENVIRONMENT. FIELD-STYLE EXPERIMENTS FOCUS ON ANALYZING RESEARCHERS-LLMS INTERACTIONS AT SCALE IN NATURAL SETTING.

As discussed in the related work section, most LLM evalua-
tions take the form of MCQ benchmarks, which are a subset of
broader Q&A evaluations. However, while these benchmarks
serve a useful purpose in quickly assessing the breadth of
knowledge of LLMs, that cannot, by their very nature, assess
the depth of reasoning, contextual understanding, and iterative
problem-solving required in the various steps of the scientific
research process [48], [49].

To address these limitations, it is critical to complement
MCQ benchmarks with end-to-end evaluations in realistic
contexts that assess both reasoning across multiple dimensions
and the ability to plan and adapt across multi-step tasks.
Therefore, we propose Evaluating AI models as scientific
Research Assistants (EAIRA), a structured evaluation method-
ology (Table I) that combines four techniques: two existing
approaches that allow for quick and repeated assessment of
the breadth of LLM abilities (MCQ Benchmarks and Open-
Response Benchmarks) plus two new approaches for end-
to-end evaluation of LLMs as scientific assistants (Lab-style
Experiments and Field-style Experiments).

MCQ benchmarks serve to test foundational knowledge
and domain-specific expertise across diverse scientific fields.
In addition to previously developed benchmarks, members
of our team have developed three new MCQ benchmarks to
address topic gaps in tasks for which MCQs are well suited.
1) Astro and 2) Climate are domain-specific benchmarks
primarily generated through automated techniques to ensure
the scalability of benchmark generation to serve new and
evolving topics in science. 3) AI4S is a multi-domain “AI
for science” MCQ benchmark, which integrates human ques-
tion generation and validation with automated generation and
validation methods to achieve a balanced, high-quality dataset
that can be developed with moderate effort. By leveraging both
human and automated techniques, we can assess the strengths
and weaknesses of automated methods deployed in Astro and

Climate in order to guide future research in improving their
generation.

Open-response benchmarks serve to test more detailed
knowledge and to generate open-ended responses or code that
assesses a model’s dynamic capability to handle unstructured,
complex tasks, moving closer to reflecting the flexibility and
adaptability required in real-world research scenarios while
still facilitating a fast, automated evaluation. For this, our
team has previously developed two benchmarks: SciCode,
which assesses the ability of LLMs to develop code which
is highly dependent on the knowledge of the context of a
scientific domain to correctly implement, and ALDbench,
which assesses the ability of LLMs to describe methods for
synthesizing materials using atomic layer deposition.

Lab-style Experiments perform evaluation by domain ex-
perts of AI models as they assist across all research tasks
in real situations. This expert-reviewed method provides a
comprehensive assessment of the relevance, effectiveness, and
iterative improvement of a model over time (e.g., 4-12 hours
per attempt). This technique goes beyond open response by
using a human proctor to guide an expert to iteratively interact
with the model in order to assess multi-stage planning and
response to results in the context of a scientific domain.
Because of the interactivity, it provides very granular feedback
about what models are or are not capable of performing giving
a unique insight into the strengths and weaknesses of models
and possible paths for improvement. However, this capability
comes at the cost of extensive effort by experts and proctors.

Field-style Experiments (inspired by, and adapting “in-the-
wild” evaluations [39], [50] for the scientific context) ana-
lyze automatically thousands of prompts, responses, and user
behaviors during real-world interactions between researchers
and AI assistants. This approach allows for large-scale capture
and analysis of user needs, model strengths and weaknesses,
and usage trends. It differs from lab-style experiments in



that: 1) experts are not guided by a proctor, 2) analysis of
interactions and feedback is automated, and 3) experiments
can be conducted in the background as experts perform routine
tasks (e.g., by capturing outputs of a site-wide LLM inference
service or API proxy). These differences greatly improve the
scalability of realistic end-to-end experiments but at the loss
of the fine-grained granularity of the strengths and weaknesses
detected by the lab-style approach.

In applying these four techniques, three key cross-cutting
aspects must be considered: ethics, trust and safety; reliable
uncertainty quantification; and scalable software infrastructure.
These three aspects ensure that LLMs are “aligned” with
human values, produce and qualify results correctly under
uncertainty; and can be evaluated efficiently at scale. Trust
and safety evaluations must address ethical alignment, defend
against jailbreak attempts, and adapt to complex real-world
contexts. Multiple-choice strategies [41] can identify biases,
toxicity, and compliance gaps, while open-response tasks [44]
can probe subtle issues such as hallucinations and machine
ethics. Lab-style red-teaming [46] systematically challenges
the model with adversarial prompts in controlled settings
to expose stepwise weaknesses, while field-style red-teaming
[47] tests the model’s robustness amid unpredictable real-
world inputs, unveiling vulnerabilities that may remain hidden
in laboratory conditions. Reliable uncertainty quantification
(UQ) is equally critical to establish trust in AI-driven sci-
entific research assistants, as it systematically gauges model
confidence and highlights potential inaccuracies [51]–[53]. UQ
insights guide targeted refinements in MCQ, open-response,
and lab- or field-style evaluations, ensuring that areas of
high uncertainty are addressed in scientific and real-world
contexts [54], [55]. Together, robust safety evaluations and UQ
foster transparency, accountability, and trust, facilitating the
responsible integration of LLMs into critical scientific research
[40], [56]. Finally, the scalable software infrastructure enables
rapid evaluation to keep pace with rapid changes in the field of
AI research. The framework needs to incorporate distributed
task parallelism [57] and fast inference capabilities [58].

The following subsections present greater detail and results
of the four techniques and three aspects of our evaluation
methodology.

A. Domain-Specific MCQ Benchmarks

Domain-specific benchmarks are crucial for evaluating
LLMs in specialized fields, as they address the limitations of
general benchmarks that often fail to capture the complexities
of domain-specific tasks. Without tailored benchmarks [8],
LLMs risk over training on well-established datasets, leading
to inflated performance that does not translate to real-world
applicability. These benchmarks are essential for guiding tar-
geted improvements, ensuring that models meet the specific
demands of scientific research, and providing a baseline to
understand their strengths and weaknesses. By capturing the
nuanced challenges of individual domains, such benchmarks
foster the effective and ethical deployment of LLMs, enabling
their potential to accelerate discovery and innovation across

disciplines. We now discuss the domain-specific benchmarking
efforts that we conducted in Astronomy and Climate modeling.

1) Astronomy: The Astronomy Benchmark [8] assesses
LLM performance in a manner that reflects the interdisci-
plinary nature of astronomy, testing both factual recall and
the ability to connect insights across subfields. This benchmark
was generated automatically using an LLM to compose MCQs
from astronomy papers. To assemble a rich repository of
scientific knowledge, we leveraged the Annual Review of
Astronomy and Astrophysics (ARAA), a selective review
journal renowned for its comprehensive overviews authored
by leading experts.

The Nougat optical character recognition (OCR) tool was
used to transcribe 885 ARAA articles over the years 1963 to
2023. Each transcribed paper was processed using Gemini-1.5-
Pro, a long-context LLM capable of handling up to one million
tokens, to generate five multiple-choice questions (MCQs)
per paper. The questions were designed to be specific, yet
independent of the article sections, with generalized answers
and balanced options to avoid bias. This process yielded a
total of 4425 MCQs covering diverse topics such as quasar
density decline at high redshifts and subgrid feedback model
calibration in simulations.

Sample question from Astronomy benchmark dataset

How does the presence of stellar companions influence
the formation and detection of exoplanets?

(A) Stellar companions can dilute transit signals, potentially
leading to misclassification of planets and inaccurate pa-
rameter estimations. Additionally, their gravitational influ-
ence can suppress planet formation in close binary systems.

(B) Stellar companions provide additional sources of gravita-
tional perturbations, enhancing planet formation by promot-
ing planetesimal accretion and facilitating the formation of
gas giants.

(C) Stellar companions contribute to the metallicity enrichment
of planetary systems, leading to the formation of more
massive and diverse planets, including super-Earths and hot
Jupiters.

(D) Stellar companions act as gravitational lenses, increasing
the detectability of exoplanets through microlensing events
and enabling the discovery of planets at greater distances
from their host stars.

The Astronomy Benchmark has been then used to assess
both the accuracy and computational cost of dozens of dif-
ferent closed and open LLM variants. This study revealed
disparities in LLM performance across general-purpose and
specialized tasks that highlight significant performance gaps
and performance-to-cost ratios. While frontier models like
Claude-3.5-Sonnet excelled in the Astronomy Benchmark with
an accuracy of 85.0%, outperforming GPT-4o (80.4%) and
Gemini-1.5-Pro (77.6%), these differences are less evident in
general-purpose benchmarks such as MMLU [29]. A study of
how Astronomy Benchmark performance varied with compute
costs showed that, roughly speaking, each 3.5 percentage
points increased accuracy was associated with 10-fold increase
in price, within most given series of models such as GPT,



Gemini or Claude. An analysis of the cost per 0.1 M tokens
showed that the cost for a desired performance can vary by
more than three orders of magnitude across different models:
see Figure 2 in [8].

The study also showed that open-weight models, though
improving, lag behind proprietary ones, with older versions
underperforming by as much as 30% on specialized tasks.
Performance also varies significantly between English-focused
and non-English-focused models, with the latter struggling in
areas like theoretical astronomy and advanced instrumentation,
reflecting gaps in training datasets. However, recent astronomy
subfields, such as post-1990 advancements, exhibit narrower
performance gaps which may be due to model’s ability to
handling historical context or older scientific consensus. These
findings emphasize the importance of domain-specific bench-
marks to assess not only performance in specialized tasks but
also the performance-to-cost ratio crucial for user adoption in
assisting with scientific research. This work also shows that
performance varies across sub-fields.

2) Climate: Climate and weather forecasting presents mul-
tifaceted challenges that demand interdisciplinary knowledge
and reasoning, making it an ideal testbed for evaluating
LLM capabilities. However, existing benchmarks for climate
science are limited [59]–[61]. Thus we developed a Climate
Benchmark, a set of MCQs focused on the urgent and complex
domain of climate science. As the manual creation of such
MCQs is labor intensive and climate scientists are already
overcommitted, we employed automated methods to develop
the Climate Benchmark. We adopted as our source material the
Intergovernmental Panel on Climate Change (IPCC) reports
[62], which are authoritative assessments synthesizing the
latest scientific research on climate change, its impacts and
potential solutions. These reports serve as a foundation for
informed decision-making and international negotiations on
climate action, highlighting the urgency of addressing the
complex and interconnected challenges posed by changing
climate. The reports are typically extensive, often exceeding
1000 pages, with each chapter and section addressing specific
topics related to climate change. To generate questions on the
various topics discussed in the report, we parsed the PDFs
section-wise, using Nougat as was done for the Astronomy
Benchmark. We then employed OpenAI’s GPT4 to create one
multiple-choice question, consisting of one correct answer and
four distractors, for each section, with the prompt designed
to create an MCQ based on the provided scientific text,
ensuring that the question evaluates a broader understanding
of climate science principles without referencing the specific
report. This process resulted in a total of 752 questions on
diverse topics, ranging from factors influencing vulnerability
to climate change to primary strategies for risk reduction.
This systematic approach ensured comprehensive coverage and
alignment with the content of the IPCC reports.

We employed the Climate Benchmark to assess the per-
formance of multiple LLMs, including GPT-4o, Llama 3.8B,
and Phi 4, on specialized climate science tasks. Among these
models, GPT-4o performed the best, achieving an accuracy of

87.34%, demonstrating its effectiveness in handling complex
climate-related tasks. GPT-4o was followed by Llama 3.8,
which achieved an accuracy of 78.48%, and Phi 4, which
scored 54.43%. This performance disparity highlights the need
for continued refinement and optimization of models to bridge
the gap in specialized applications.

The development of the Climate Benchmark provided useful
insights into the creation and evaluation of MCQ datasets
for scientific applications. The climate-focused MCQs, derived
from IPCC reports, were designed to assess knowledge recall
and decision-making, emphasizing accurate understanding of
scientific concepts. While primarily testing factual knowledge,
these questions establish a strong foundation for expanding
into tasks that require more complex reasoning and application
in climate science. However, the automatic generation of
MCQs sometimes produced semantically similar questions that
differed only slightly in phrasing or structure while testing
the same core information. This observation highlights the
need for robust evaluation mechanisms to eliminate redun-
dancy and ensure diversity within the dataset. While automatic
MCQ generation greatly accelerates the creation of benchmark
questions, it cannot replace a rigorous evaluation process. A
combination of LLM-based evaluators and human oversight
is crucial for maintaining the benchmark’s quality, relevance,
and accuracy, ensuring that it meets the standards required for
research-focused benchmarks.

B. Scalable AI4S MCQ Benchmark

The overarching goal of the AI4S benchmark is to evaluate
the knowledge extension of LLMs across many different
scientific domains. In that respect, it is similar to GPQA [63].
However, AI4S design focuses on the quality and scalability
of MCQ generation and validation. While GPQA has only 448
MCQs, our objective is to generate and validate thousands of
MCQs and continuously add MCQs as LLMs progress in their
capabilities.

Current MCQ benchmarks, including GPQA, have two main
limitations: 1) they are quickly saturated because of the fast
progress of LLMs. 2) there is a high risk of contamination
(benchmark included in the training sets) if the MCQs are
made public. These two limitations arise from the static aspect
of the current benchmarks. They are developed once and do
not evolve. The current practice is to develop new versions [64]
when the initial benchmark is saturated [65] and to open only
a portion of the benchmark MCQs to avoid contamination.

To address the two limitations, we explore a novel approach
to develop scalable generation and validation of MCQ bench-
marks for the evaluation of LLMs capabilities: Automatic
continuous Generation and validation of Increasingly Large
MCQ benchmarks: AGIL.

Building on the experience gained from the Astronomy and
Climate domain-specific benchmarks, we are developing an
AGIL process by which we combine manual and automated
methods to generate and validate MCQs.

We present here our initial finding towards the creation
of a 1000-MCQ AI4S benchmark that spans five scientific



Fig. 1. The AGIL approach to generate scalable MCQ benchmarks. The current version of the AI4S benchmark contains only manually accepted MCQs.
The AGIL approach enables the integration of automatically accepted MCQs after the validation of their difficulty and quality.

domains: Computer Science, Astrophysics, Climate, Physics,
and Chemistry. Our goal with this first study is to assess
key aspects of the AGIL approach: validity of the difficulty
level, quality of the generated MCQs compared to GPQA
ones, quality of the automatically generated MCQs compared
to manually generated ones, and quality of the automatically
validated MCQs.

In the AGIL approach (Figure 1), manual MCQ generation
and validation by experts is critical to provide high-quality,
domain-specific MCQs that serve as a gold standard for
evaluating LLM performance and developing automatic MCQ
generation and validation workflows. The goal of automated
generation and validation (LLM as a judge technique [66]) by
LLMs is to address the scalability issues of manual generation
and validation while keeping their quality levels.

For the manual generation and validation of MCQs we
organized hackathons which engaged 140 domain experts
(PhDs and other research staff) 1. We offered the participants
to generate MCQs from scientific papers of their choosing,
including their own. The manually generated MCQs were
crafted by using a purpose-built authoring interface (Appendix,
Figure 9) that allowed contributors to test their questions on
smaller models like Llama 3 before submission so as to ensure
a baseline difficulty threshold. Manual validation used another
specifically created form (see Appendix, Figure 10). The tool
used for the MCQ generation and validation is available on
github (https://github.com/auroraGPT-ANL/questions-ui)

Automated MCQ generation leveraged LLMs such as GPT-4
with domain-specific prompts to create MCQs from scientific

1the exercises in this paper were done with volunteer Argonne employees,
who understood that the goal of this effort is to identify opportunities to
improve models. While the research team offered a rubric for notes and
observations, the participants were free to use whatever rubric they preferred.
The following is the general approach that was used.

papers across fields such as climate science, physics, and
chemistry, with validation guided by the LLM-as-a-Judge
technique. Both the prompts used for automatic MCQ gen-
eration and validation, as well as the rubrics for validation
and reviews, were informed by the manual generation and
validation, as well as by the experience gained during the
domain-specific benchmark development discussed earlier.

This process generated 980 MCQs (720 manually and 260
automatically). Of 588 total manually generated reviews, 317
MCQs have been assessed so far, of which 254 were accepted.
Acceptance was subject to the following criteria: appropriate
difficulty, relevant, complete and correct answers and distrac-
tors, controversial answers, mathematic requirements, as well
as relevant skills and domain selection. The small percentage
of accepted MCQs 25% illustrates the difficulty of generating
and validating high-quality scientific MCQs.

In addition, domain experts categorized the accepted MCQs
into easy, medium, and hard levels, capturing a spectrum of
difficulty that mirrors real-world scientific challenges. This
multi-level structure enables the AI4S benchmark to evaluate
both the foundational and advanced capabilities of LLMs,
offering an assessment of their strengths and limitations.

To evaluate the merits of our AGIL approach, we performed
several tests to evaluate the quality of (i) the level classifica-
tion, (ii) the AI4S benchmark compared to GPQA, (iii) the
automatically generated MCQs, and (iv) the automatic MCQ
validation.

For all tests, we used the STaR framework (see section VI)
with five shots. The first row of the table Table III shows
the overall performance of Llama 3 8B on the 254 MCQs.
The resulting accuracy of 20% correspond to a random guess.
The next three rows show results for MCQs grouped by
their human-identified levels of difficulty. We see that the



TABLE III
PERFORMANCE METRICS FOR LLAMA 3 MODELS ACROSS VARIOUS AI4S BENCHMARK LEVELS.

Model Task nsamples acc (stderr) acc norm (stderr)
Llama-3-8B accepted 254 0.2008 (±0.0252) 0.2717 (±0.0280)

Llama-3-8B accepted easy 81 0.2222 (±0.0465) 0.3210 (±0.0522)
Llama-3-8B accepted medium 116 0.1983 (±0.0372) 0.2672 (±0.0413)
Llama-3-8B accepted hard 57 0.1404 (±0.0464) 0.1930 (±0.0527)

Llama-3.1-8B accepted 254 0.1969 (±0.0250) 0.2638 (±0.0277)
Llama-3-70B accepted 254 0.2598 (±0.0276) 0.3701 (±0.0304)
Llama-3.1-70B accepted 254 0.2520 (±0.0273) 0.3386 (±0.0298)

Llama 3 8B results are consistent with human-identified diffi-
culty levels, with Llama 3 8B achieving the best score on easy
MCQs (22%) and significantly below random performance on
hard MCQs (14%). These results validate the quality of the
level classification. The next three rows of Table III show the
performance of other Llama-3 models for the AI4S accepted
MCQs. We observe that Llama 3-70B performs less well
on all AI4S-accepted MCQs (26% of questions answered
correctly on all difficulty levels) than on GPQA (49% of
questions answered correctly). Note that while GPQA has one
correct answer and three distractors, meaning 25% accuracy
for random responses, AI4S MCQs have four distractors and
thus only 20% random response accuracy. We conclude that
AI4S is a more challenging LLM benchmark than GPQA.

To obtain a finer quality comparison between AI4S and
GPQA MCQs, we use automatic MCQ validation to quantify
the quality of every MCQ on the first seven criteria (N/A value
for the eighth criterion on GPQA). Table IV shows the scores
of the two benchmarks on the seven criteria. On average, AI4S
MCQs (average of 4.55) reach the same quality level as the
GPQA MCQs (average of 4.45).

TABLE IV
MEAN AND STANDARD DEVIATION (SD) SCORES FOR AI4S AND GPQA

ACROSS VARIOUS CRITERIA.

Item AI4S Mean (SD) GPQA Mean (SD)
Appropriate 3.68 (0.72) 4.28 (0.58)
Complete 4.52 (0.87) 4.42 (0.75)
Controversial 4.97 (0.19) 5.00 (0.04)
Correct 4.60 (1.36) 4.21 (1.82)
Domains 4.68 (0.73) 4.97 (0.25)
Mathematic 4.81 (0.95) 3.50 (2.30)
Relevant 4.64 (0.56) 4.81 (0.42)
Skills 3.97 (0.70) N/A

Overall, these results validate the quality of AI4S compared
to GPQA.

We used the acceptance criteria to compare the quality
of the manually and automatically generated MCQs. This
comparison reveals that the quality of manually validated,
automatically generated questions is on par with manually
validated/generated ones. Overall these results show that au-
tomatic MCQ generation can be used to generate MCQs with
a manual verification step.

To evaluate the quality of automatic MCQ validation, we
compare it with manual validation. We used Mistral Large 2
as the judge, prompting it to evaluate each MCQs on a scale
of 1–5 for each of eight criteria and also asking it to provide

concise rationale for each score. All criteria were evaluated
in a single prompt. We expanded each criteria specification
to define each level on the scale for all criteria explicitly. The
prompts used for the judge are in the Appendix, Figure 17. We
observe the accuracy of a model trained on these judgements to
predict whether a question will be accepted/rejected to be 72%.
For comparison, of the 144 questions with multiple reviews,
only 61% of reviewers agreed on acceptance.

During the development of the AI4S benchmark using
our proposed AGIL approach, several key lessons emerged.
Generating high-quality scientific MCQs manually is a chal-
lenging task for multiple reasons: crafting questions with dis-
tinguishable levels of difficulty (undergraduates, PhD students,
postdocs, and staff) is non-trivial, and creating distractors
that are plausible but not overly confusing requires significant
effort and precision. Validation of these questions proved even
more demanding, as finding appropriate reviewers for difficult
and specialized topics can be challenging, and ideally, each
question requires validation by three experts to ensure relia-
bility. Our goal is to continue the development of the AGIL
approach to address this difficulty issue and to continuously
generate AI4S MCQs from the large pool of available scientific
papers. We will release the benchmark using a sliding-window
approach, keeping a significant portion of newly generated
MCQs (e.g. 70%) not public.

C. Open Response Benchmarks

Next we discuss the open-ended benchmarks. These are
essential for evaluating the reasoning, creativity, and problem-
solving abilities of LLMs, particularly in scientific domains.
Unlike MCQs, which primarily test factual recall or single-
step reasoning, open-ended tasks engage models with com-
plex, real-world problems that require multi-step reasoning,
synthesis of knowledge across domains, and adaptive problem-
solving. For instance, while an MCQ might test a model’s
recall of a specific scientific fact, an open-ended task could
require the model to design an experiment, analyze data, or
propose solutions to unsolved research questions. This format
aligns better with the exploratory nature of scientific inquiry,
offering a more comprehensive assessment of a model’s capa-
bilities. However, existing open-ended benchmarks often fall
short in capturing the depth and realism needed for scientific
evaluations. Many rely on synthetic tasks that fail to reflect the
intricacies of real-world scientific challenges, such as multi-
disciplinary reasoning or generating accurate code for practical
applications.



While open responses questions are versatile in capability,
their evaluation is more complicated compared to MCQs.
Different assessment approaches are applied, depending on the
task at hand. A first class of statistical scorer approaches looks
at co-occurrence of n-grams (sequences of letters or words)
in LLM outputs vs. supplied ground truth responses. In this
context, widely used scores are BLEU (BiLingual Evaluation
Understudy) compares LLM outputs against ground truths. It
calculates the precision for each matching n-gram (n consec-
utive words) between an LLM output and expected output.
ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
evaluates text summaries and computes recall by comparing
the overlap of n-grams between LLM outputs and expected
outputs. It determines the proportion (0–1) of n-grams in the
reference present in the LLM output. METEOR (Metric for
Evaluation of Translation with Explicit Ordering) calculates
scores by assessing both precision (n-gram matches) and recall
(n-gram overlaps) and leverages linguistic databases to account
for synonyms. Statistical scorers do not take any semantics and
reasoning capabilities into account.

A second class are embedding approaches that seek to com-
pare the semantics of LLM responses and reference answers.
Here, some widely used scores include BERTScore, that relies
on pre-trained language models (e.g., BERT) and computes
the cosine similarity between the contextual embeddings of
the LLM responses and references. These similarities are
then aggregated to produce a final score. Other tools such as
CheckEmbed [67] can be used to compare the semantics of
LLM responses and reference answers. The third and most
recent class is the LLM-as-a-judge methods which tackle
the problem of evaluating LLM open responses when no
reference answer is available. This approach currently has
two variations. In the “Pairwise comparison” version, an LLM
judge is presented with a question and two answers, and tasked
to determine which one is better or declare a tie. In the “Single
answer grading” version, an LLM judge is asked to directly
assign a score to a single answer. In principle, LLM-as-a-
judge can offer several key benefits: consistency, scalability,
and explainability. However, the approach also has limitations:
position bias (first answer better in “Pairwise comparison”),
verbosity bias (longer answer better), self-enhancement bias
(self-generated answer better) and limited capability to grade
math and reasoning questions [66]. Moreover, the reliability
of such evaluations is still the subject of research.

We now discuss two open-ended benchmarks, one for sci-
entific code generation and another for atomic layer deposition
in Material Science.

1) SciCode - Scientific Code Generation Benchmark:
The SciCode Benchmark is a set of manually curated coding
problems designed to assess LLM capabilities for solving
complex scientific coding problems across diverse domains.
By providing tasks that reflect real-world challenges and re-
quire multi-step reasoning, SciCode allows models to be tested
in contexts that align closely with the demands of scientific
research [68]. SciCode includes problems across a range of
scientific domains, including computational mechanics, quan-

tum information, quantum chemistry, ecology, and molecular
modeling. It consists of 80 main problems, decomposed into
338 intermediate steps, enabling a structured approach to
assessing model capabilities. Solving each individual problem
requires that an LLM implement multiple Python functions
corresponding to subproblems and integrate those functions
into a cohesive solution: see Figure 14. Each problem is
accompanied by a gold-standard solution and multiple test
cases so as to permit robust and reliable automatic evaluation.

Each SciCode problem is meticulously annotated and ver-
ified by at least two senior researchers to ensure accuracy,
and is drawn from real-world research tasks, maintaining
relevance to practical applications. Problems are curated to
avoid overlap with publicly available datasets and thus to
test the deep scientific knowledge and analytical skills of
LLMs by requiring the decomposition and integration of
complex problems into comprehensive solutions. Additionally,
SciCode allows for flexible evaluation of model capabilities in
varied setups, enabling adjustments like providing background
information or conditioning on previous solutions.

The SciCode Benchmark is configured to assess LLM
capabilities to solve SciCode problems by using zero-shot
prompts, maintaining a general approach while creating dis-
tinct prompts for various evaluation setups to guide the model
on the tasks, as described in detail in [68]. The prompts
remain consistent across models and fields, incorporating
instructions for the main and sub-problems, as well as code
from previous subproblems. We evaluated the coding capa-
bilities of several state-of-the-art LLMs using the SciCode
benchmark, focusing on three key aspects to assess their
performance. First, the Impact of Scientific Background was
analyzed by testing models in two modes: without background,
to evaluate inherent scientific knowledge and reasoning, and
with background, to focus on coding and instruction-following
capabilities. The results showed significant performance im-
provements with background information, highlighting the
limitations of current LLMs in scientific reasoning. Second,
the comparison between Gold vs. Generated Solutions revealed
insights into the challenges of realistic evaluations. While gold
solutions accurately address each problem, generated solutions
introduce error accumulation, creating a more practical and
demanding evaluation scenario. Lastly, the assessment of Main
vs. Subproblems provided a nuanced understanding of model
performance. A main problem was considered solved only
when all subproblem solutions and the integrated result were
accurate. Additionally, SciCode’s design allows independent
evaluation of subproblems, enabling precise analysis of mod-
els’ reasoning and coding abilities across discrete tasks. These
evaluation dimensions underscore the benchmark’s rigor in
testing LLMs for real-world scientific applications.

We summarize the findings of our studies using several
state-of-the-art models in Figure 2. These results show that
SciCode is a difficult benchmark for current LLMs. Consistent
with our observations on proprietary models, open-weight
LLMs under test also showed their lack of capabilities in



Fig. 2. The performance of various LLMs on SciCode problems. This histogram displays the accuracy (vertical axis, 0% to 100%) of various state-of-the-art
LLMs (listed on the horizontal axis) in solving both main problems (red) and their associated subproblems (blue) within SciCode. To solve a main problem,
LLMs must implement one Python function per subproblem and integrate them into a comprehensive solution. SciCode provides gold-standard solutions and
multiple test cases for reliable automatic evaluation. These consistently poor results highlight the need for LLMs that incorporate scientific knowledge and
advanced reasoning to better assist researchers.

solving any main problem despite being able to solve a number
of sub-problems correctly.

The SciCode project provides insights into the challenges
of evaluating LLMs in scientific coding tasks, highlighting
significant gaps in current capabilities. Despite recent advance-
ments, state-of-the-art models like OpenAI’s o1-preview and
Claude3.5-Sonnet solve only a small fraction (7.7%) of the
main problems, underscoring the disparity between existing
LLMs and the deep scientific reasoning required for real-world
research. SciCode is designed to address this gap by focusing
on real-world, research-level problems across diverse natural
science fields, including mathematics, physics, chemistry, and
biology. Sourced from peer-reviewed work, these problems
test LLMs’ ability to generalize to less familiar domains. By
decomposing problems into subproblems with detailed annota-
tions, SciCode rigorously evaluates models’ coding, reasoning,
and knowledge integration capabilities. While providing scien-
tific background information improves model performance, the
persistent struggle of LLMs with these tasks emphasizes their
current limitations in handling complex scientific challenges.
The project highlights the importance of high-quality data,
domain-specific validation, and carefully curated problems to
advance the development of AI tools for scientific research.
The findings indicate substantial progress is needed to enhance
scientific reasoning and background knowledge integration
in LLMs to enable their effective application in real-world
scenarios.

2) ALDbench - Materials Synthesis Benchmark: An
area that lacked relevant benchmarks is materials synthesis.
This is particularly important for potential applications of
LLMs in automated materials discovery or as AI research as-
sistants. LLMs underpinning such capabilities need to exhibit
both the ability to reason about specific processes (for instance
to avoid unsafe conditions or transfer ideas across reactors and
process conditions) and have a robust understanding of the
literature (to build on existing process knowledge and avoid
known dead ends).

As such capabilities appear hard to evaluate by using either
MCQs or the statistical scorer or embedding approaches de-
scribed earlier. we developed a new open-response benchmark
ALDbench on materials synthesis, and in particular on a
synthesis technique called atomic layer deposition [69]. Here
we targeted a range of difficulty spanning from graduate level
to PhD-level domain expert current with the state of the art.
A model’s ability to perform at a domain expert level is
paramount whenever models are expected to assist in decision
making processes that involve costly experiments. Beyond its
applied interest in areas such as energy and microelectronics
[70], this domain brings together multiple topics that are
commonplace in chemistry-driven synthesis, including metal-
organic and inorganic molecules, gas-surface kinetics and
heterogeneous reactions, and gas phase transport. Evaluating
LLM capabilities in this field can provide insights with wide
applicability to other material synthesis techniques.



Fig. 3. Distribution of the mean scores of GPT-4o responses to all questions
in the ALDbench benchmark.

To compile the benchmark, we asked six PhD-level human
experts to generate “questions that a researcher or a graduate
student who is not familiar with a specific process/application
would ask an AI assistant.” The curated questions could be
grouped into four categories: 1) how to grow, where the query
is about material synthesis; 2) specific questions about ALD
processes, comprising more in-depth queries about a process
or material; 3) general ALD knowledge, with questions about
the synthesis technique; and 4) applications.

The human experts were then asked to grade the questions
using a scale of 1 to 5 on two criteria with the following
rubrics similar to the AI4S benchmark: (1) Difficulty: 1–Easy,
early graduate; 5–Hard, top expert; (2) Specificity: 1–General;
5–Specific, quantitative.

Each response is then graded using four criteria with the
following rubrics: (1) Overall quality: 1–Very low quality; 5–
Excellent; (2) Specificity: 1–Too broad; 5–Targeted; (3) Rel-
evance: 1–Irrelevant fluff; 5–Relevant answer; (4) Accuracy:
1–All made up; 5–All correct. The use of multiple criteria
allowed us to probe aspects of the generation process, such
as relevance or specificity of the response, that are not easily
captured by benchmarks focused on accuracy.

We ran this benchmark using an instance of OpenAI’s GPT-
4o, with seven PhD-level human experts reviewing model
responses. Details are in the ALDbench paper [69]. The model
responses received a composite quality score of 3.7, consistent
with a passing grade. However, 36% of the questions received
at least one below average score. When we carried out an
in-depth analysis of the responses we identified at least five
instances of hallucination. In Figure 3 we show the distribution
of mean scores for all the questions in the benchmark and the
four criteria evaluated by the human experts.

We also explored statistical correlations between the dif-

ficulty and specificity of each question and the human ex-
pert scores for each evaluation criteria. For each (question,
response) pair we computed p-values using the Fisher exact
test to evaluate the statistical significance of the correlation.
We found statistically significant correlations between question
difficulty and response quality (p0 = 0.033), question difficulty
and relevance (p0 = 0.016), and question specificity and
response accuracy (p0 = 0.007). In all three cases, higher
difficulty or specificity correlated with lower scores. These
results emphasize the need to evaluate LLMs across multiple
criteria beyond traditional metrics of difficulty and accuracy.

Our results show that highly targeted, open-response bench-
marks can provide information about LLM performance in
scientific domains that is complementary to MCQs or natural
language processing benchmarks. The methodology developed
in this work allowed us to probe in depth model performance
in a specific domain. With the aid of a small team of PhD-level
experts we were able to identify instances of hallucinations and
explore model responses in a level of detail that it is hard to
accomplish using automatic evaluation methods. The extension
of this approach to other domains, such as energy storage or
microelectronics, is trivial. Moreover, as a byproduct of this
effort, we collected a small dataset of questions and human
rated responses across four different evaluation criteria. As
we explore other domains we can use this data to train or
validate automatic question evaluation approaches for open-
ended benchmarks.

D. End-to-End Evaluations

Although MCQ benchmarks are effective in testing factual
recall and reasoning within constrained formats, and open-
ended benchmarks gauge the generation of detailed and flex-
ible responses, these methods do not capture the iterative
and complexity of scientific problem solving. End-to-end
evaluations attempts to address this gap by assessing, in real
situations, the models responses for assisting researchers in
solving scientific problems. We propose two novel types of
end-to-end methods in the context of scientific research: Lab-
style and field-style experiments.

1) Lab-style experiments: These experiments are de-
signed to evaluate the capabilities of AI models to assist
researchers in performing the typical tasks (Table I) to solve
scientific problems. Note that, in real situations, these tasks
are often repeated several times to solve problems. By cap-
turing and evaluating all interactions between research and
LLMs while attempting to solve a research problem, a lab-
style experiment can capture accurately the complex reality
of solving complex research problems. It can thus provides
a unique perspective on the “distance” between the ideal
scientific assistant and the current capabilities of AI models.

The setup for lab-style experiments involves defining a
specific scientific problem and presenting it to multiple AI
models for comparison. Each model is manually tasked with
assisting in all the research tasks using the same prompts, en-
suring consistency across evaluations. Prompts and responses
are meticulously recorded, and domain experts analyze and



Fig. 4. Example of multi-turn interaction between a researcher and several LLMs used as research assistants in an attempt to repeat the research developed for
the HPDC24 paper. Because of space limitations, the figure does not show the models’ responses and research analysis. The full interaction for the HPDC24
experiment can be found here: https://tinyurl.com/yv4awky3

comment on each response to assess model relevance, ef-
fectiveness, and overall performance. The response of each
model in every step is compared to that of a human assistant,
typically at the post-PhD level. Performance is characterized
by evaluated against criteria such as correctness, conciseness,
and precision.

We have conducted lab-style experiments with not only
different LLMs but also different versions of individual LLMs,
with the latter studies permitting evaluation of improvements
over time. For example, a relevant metric of progress across
model generation is the number of prompts needed to solve
a particular research problem. By focusing on real-world
scientific workflows and expert evaluation, lab-style exper-
iments provide a practical approach to observe AI model
improvements as scientific research assistants.

To date, we have performed three lab-style experiments
with five domain experts (one expert per experiment) 1 each
of whom provided a problem to solve, generated prompts
covering the different research steps, and analyzed model re-
sponses. Three experiments were related to parallel/distributed
computing (scheduling of a directed acylic graph; solving a

partial differential equation; zero-overhead checkpointing) and
were selected carefully from three categories: open problem
(no known solution), published problem (solution known),
and recently published problem (solution known). For the
“published problem,” the paper is more than two years old, and
thus we assume that AI model developers had access to the
paper. For the “recently published problem,” the experiment
was performed just a few months after the publication; here,
we assume that many models were not trained with the paper.

The experts with whom we worked in these experiments had
never previously used AI models as research assistants. The
experts provided two levels of analysis: 1) a detailed analysis
of the responses received for individual prompts, and 2) high-
level scoring compared to a human researcher using the A,
B, C, D, E, F scale (A being the human reference, F being
the worst possible score). In total, the three experiments cover
about 20 hours of interactions, about 100 prompts, and about
250 pages of testing and analysis. We used 10 AI models (not
all models were used in all three experiments): O1-preview,
GPT-4o, GPT-3.5, Claude3 Sonnet, Claude Haiku, Mistral,
Llama3 70B, Llama3 405B, Perplexity Pro, and Gemini 1.5



Fig. 5. A partial scoring of several models used as AI assistants on August 20, 2024, to solve the zero-overhead checkpointing problem. The results highlight
the strengths and weaknesses of different models for the different research steps. We note that the RAG model (Perplexity Pro) has a decisive advantage in
several steps for this particular problem. Other models struggle in most steps.

(not all models were tested on all prompts because some
models produced incorrect responses before reaching the end
of the evaluation.)

We show in Figure 4 the beginning of the multi-turn
interaction and in Figure 5 part of our initial high-level scoring
of several AI models for the zero-overhead checkpointing
problem. The lab style experiment was performed on Au-
gust 20, 2024. The scoring reflects the performance of the
models during the experiment. This problem falls into the
category of recently published problems. The goal was to
check whether the models could reproduce the analysis and
design of the LLM checkpointing system presented in the 2024
ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC24) best paper [71]. The
most important part of the experiment was to assess each
model’s ability to 1) identify the fundamental observation
(non-mutable parameters and optimizer state during the for-
ward and backward passes of LLM training) and 2) propose a
design for an asynchronous checkpointing system that exploits
this observation.

Based on these initial three experiments, we performed two
other experiments on open problems in Chemistry and Biol-
ogy. These experiments used the same overall interaction col-
lection approach and compared more recent reasoning models
(O1-preview, OpenAI O3-mini, Gimini 2.0 experimental). We
also used a more rigorous scoring system, defining precisely
every score level for every evaluated skill. From these experi-
ments, we developed a Lab-style experiment tool to collect the

problem setup (Figure 11), every prompt-response-assessment
(Figure 12), and final assessments (Figure 13). This collec-
tion tool is available on github (https://github.com/auroraGPT-
ANL/questions-ui)

Our experience with the “Lab-style experiment” method
allows for several observations regarding its utility and limita-
tions. Unlike traditional benchmarking, this method places AI
models in real-world research scenarios, enabling evaluators to
directly assess their knowledge, capabilities, and overall use-
fulness for specific tasks. By relying on multi-turn prompting
and open responses, the method also tests the propensity of
AI models to digress (e.g., for the HPDC24 paper experiment,
a model had a tendency to focus on the consistency aspect of
checkpointing, which is not relevant in that context, instead of
focusing on overhead reduction) and hallucinate (as seen with
earlier models in 2024 that frequently generated fabricated sci-
entific references). However, this approach is not yet scalable
and remains narrow in coverage; it requires significant manual
effort, with two researchers spending 5–6 hours analyzing and
comparing models for specific tasks. The specificity of the
addressed research problems further limits the generalizability
of the findings. Despite these constraints, the method excels
in two aspects 1) providing a fine-grain capability assessment
of LLMs as scientific assistants in a realistic context and 2)
tracking model progress across generations. For instance, in
solving the zero-overhead checkpointing problem, successive
model iterations demonstrated improved efficiency, reducing
the number of prompts needed to reach the key insight—



from five prompts with GPT4o to just one prompt with
Argo/O1-preview, which incorporates a science-oriented pre-
prompt. This result highlights the method’s potential to reveal
meaningful advancements in AI capabilities over time.

2) Field-style experiments: This method takes inspiration
from previous studies analyzing user-LLM interactions at scale
[38], [39], [50]. The “In the wild” method captures and ana-
lyzes all the interactions between volunteer users and AI mod-
els. This method provides additional critical information for
the development and improvement of AI models for science:
a precise understanding of researcher needs and requirements
regarding AI assistants (e.g.: What task do researchers ask
AI models to perform? What are their expectations regarding
model responses? How frequently do researchers use AI
models?); a deeper understanding of AI models strengths
and weakness (by analyzing the thousands of prompts and
responses); a window on the trends behind the use of AI
models as research assistant (e.g., increased usage frequency,
increased number of users, nature and distribution variations
of the performed tasks); and tracking of AI model progress
across generations. Ideally, this method will analyze online
thousands of user-LLM interactions. Compared to the “Lab-
style experiment” method, users are not expected to evaluate
LLM responses directly. Instead, evaluation is indirect, based
on the study of the flow of prompts and responses. This
method leverages user behavior as a signal to diagnose LLM
failure modes [72]. For example, a user submitting rephrasing
questions, providing feedback, or abandoning the interaction
are signs of LLM weaknesses in understanding user intent.
The flow can then be analyzed to diagnose potential sources
of weakness [73]. Previous “in-the-wild” experiments focused
on nonscientific domains. The Field-style experiment method
adapts the “in-the-wild” approach to the scientific context
by defining criteria and scoring specific to the scientific
methodology.

On November 1, 2024, Argonne organized a JAM session
that captured 180 conversations between Argonne researchers
and Argo/O1-preview 1 Researchers were asked to bring to the
JAM session evaluation a scientific problem that they would
work on with Argo/O1-preview as a research assistant. At the
end of the session, the researchers evaluated their experience
according to five criteria: Novelty, Productivity, Solution,
Strength, and Importance. (This approach is consistent with
that followed in a much smaller study conducted at Los
Alamos National Laboratory.) Five possible responses were
proposed for each question, corresponding to a score of 1 to
5.

The scores produced by the Argonne researchers indicated
that: 1) Importance: 82% of researchers consider that AI
models such as Argo/O1-preview are “very important” or
“critical” to their team’s success, 2) Strength: at 59%, they
consider that AI models significantly or noticeably improve
productivity, 3) Productivity: 51% of researchers compare AI
models such as Argo/O1-preview to PhD students or postdocs,
4) Solution quality: 50% of the researchers consider that
AI models such as Argo/O1-preview produce exceptional or

strong solutions, 5) Novelty: only 21% of the researchers
consider that AI models such as Argo/O1-preview provide
notably novel or groundbreaking solutions. (Argo is Argonne’s
API proxy for OpenAI models including o1 preview. Because
OpenAI does not make it’s system prompt available, this needs
to be recreated. We note the system prompt used for Argo in
the Appendix, Figure 15.)

Although informative about the needs expressed by re-
searchers to access models such as Argo/O1-Preview, the
outcomes of the November 1, 2024 JAM session evaluation
did not identify the specific strong and weak science skills
of Argo/O1-preview. To understand the reasons behind the
perceived weaknesses of Argo/ O1-preview, we use LLama-
3.3-70B-Instruct for an LLM-as-a-judge approach to analyze
the recorded conversations and score the performance of the
Argo/O1-preview concerning scientific skills.

The goal is to develop a pipeline (workflow) to analyze the
recorded conversations to assess the strengths and weaknesses
of LLMs as scientific assistants. From the 180 JAM session
survey responses, we manually filtered a subset of 125 that had
valid transcripts and were sufficiently challenging scientific
problems, requiring PhD level domain expertise and reasoning
capability. We generated an initial version of the prompt to
analyze the conversations using Gemini experimental 1206
and refined it manually. We chose Llama-3.3-70B-Instruct as
the highest performing open model on several benchmarks
including GPQA, and presented it with each transcript for-
matted into a detailed LLM-as-a-judge prompt (see Appendix,
Figure 18) to evaluate 29 scientific criteria. The responses
contained strengths, weaknesses, and examples/evidence from
each conversation, as well as a formatted scoring from 1–10
for each of the criteria. The model was instructed to identify
skills that did not apply to a given conversation rather than
give an actual score. A score of 0 reflects a situation in which
the model could not assign a score to the criteria because
it determined that the criteria were not applicable. After
obtaining the responses for every conversation, the model was
provided batches of 25 to summarize, with specific instructions
that these summaries would be used to synthesize a final
summary. Batches were used, as the total token count of all
the responses was 164K, larger than the default 128K window
of Llama 3.3.

Figure 6 presents the results of the conversation analysis
pipeline as a proof-of-concept. The presented results need
human validation: LLMs are known to hallucinate and present
overly positive assessments of outputs compared to human
reviewers. Additionally, the field-style experiments revealed
that 59% of researchers reported noticeable productivity im-
provements using LLMs, while 51% likened the LLM’s con-
tributions to those of PhD students or postdocs. However, only
21% rated the models as delivering notably novel or ground-
breaking solutions. These results should not be considered
a complete or definitive assessment of human assessment of
LLM performance.

The Field-style method for analyzing the strengths and
weaknesses of LLMs is still in its nascent stages. Our analysis



Fig. 6. LLM-generated summary of detected LLM strengths and weaknesses in 125 scientist-Argo/O1-preview conversations

of scientist-LLM conversations represents the first attempt to
use an LLM-as-a-judge to evaluate the performance of an
LLM as a research assistant. Insights from the JAM session
organized at Argonne highlight several lessons. First, scoring
user-LLM interactions holistically with a small set of criteria
(five in this case) permits only a high-level evaluation, insuf-
ficient for diagnosing specific sources of LLM weaknesses.
Second, recording user-LLM interactions with detailed anno-
tations, such as identifying the skills required for each prompt
and scoring individual responses, offers greater diagnostic
potential. While this detailed approach is not feasible for
general scientist-LLM dialogues, it can be implemented in
structured, especially organized sessions. Lastly, while LLMs-
as-a-judge offers a scalable mechanism for analyzing user-
LLM interactions, the current implementation remains a proof
of concept. Additional research and validation are necessary
to build confidence in the results produced by this analysis
pipeline.

IV. RELIABILITY AND UQ OF EVALUATIONS

The success of LLMs in scientific domains, such as chem-
istry, biology, and physics, has been remarkable, but their
trustworthiness as scientific assistants remains a significant
concern. These models, including GPT, Claude, and Llama,
are prone to generating unreliable or fabricated responses,
often referred to as hallucinations [52]. Understanding and
quantifying uncertainty in LLM outputs is essential to ensure
safe, reliable, and informed decision making, particularly in
scientific domains. Traditional uncertainty quantification (UQ)
techniques, which rely on accessing internal model parameters
[74], face challenges due to the black-box nature of modern
LLMs like GPT-4, Claude 3, and Gemini, which are primarily

accessible as API services. Recent research has focused on de-
veloping novel approaches to assess uncertainty directly from
model outputs, such as semantic entropy [75], sampling-based
methods, and aggregation techniques [51], [76]. These tech-
niques aim to evaluate input sensitivity and output consistency,
highlighting where models are most vulnerable. By improving
transparency and trust, these UQ strategies play a crucial role
in responsible AI deployment. Addressing these challenges is
vital for leveraging LLMs in scientific applications, where
errors can have substantial consequences. Moving forward,
advancing UQ methods and enhancing LLM interpretability
will be key to making these models safer and more robust in
critical scientific and industrial domains.

Inspired by psychological assessments in which the same
question is asked in different ways to test consistency, we
propose a technique called Question Rephrasing [55] to quan-
tify the uncertainty in LLM outputs. This approach involves
rephrasing a given question while preserving its original
semantic meaning and comparing LLM responses before and
after rephrasing to assess input uncertainty. In addition, we
adopt a sampling method that repeatedly queries an LLM
with identical inputs to evaluate output uncertainty. We applied
these methods to assess GPT-3.5 and GPT-4 performance on
tasks in the chemistry domain, specifically property predic-
tion and forward reaction prediction. Input uncertainty helps
determine the LLM’s sensitivity to variations in molecular
representations (e.g., alternative SMILES notations), while
output uncertainty evaluates the inherent variability in LLM
predictions. These techniques allow us to systematically ex-
plore how robust and reliable LLMs are in handling different
forms of input and producing consistent output. Below, we
outline our approach:



Fig. 7. SMILES representation variants of Aspirin. While all structures
depict the same molecule, their SMILES representations are different, which
introduces input variations. Top left: Canonical SMILES representation of
Aspirin. Rest: Five SMILES variations of Aspirin.

1) For a chemistry-related task t, given a SMILES rep-
resentation xi of the i-th molecule, generate a prompt
Pt,xi

based on a task-specific template .
2) Generate a list of up to n SMILES variants of the

molecule xi: L = {x1
i , x

2
i , ..., x

n
i }. We ask GPT-4 to

rank the SMILES variants according to their confidence
in interpreting their structures and choose the one, say
x̂i, with the highest confidence in constructing a prompt
Pt,x̂i

by replacing xi in Pt,xi
with x̂i.

3) Ask the LLM to generate m responses for the prompt
Pt,x̂i and obtain Rt,x̂i = {rt,x̂i,1, rt,x̂i,2, ..., rt,x̂i,m}.

4) Calculate the entropy-based uncertainty metrics Ut,xi

and Ut,x̂i
for Rt,xi

and Rt,x̂i
, respectively.

5) Measure the input uncertainty by comparing Ut,xi
and

Ut,x̂i
for all chosen xi. Measure the output uncertainty

by examining Ut,xi and Ut,x̂i separately.

Our experiments revealed that ChatGPT-4 exhibited a no-
table sensitivity to Question Rephrasing. We view this sen-
sitivity as providing insight into the input uncertainty of the
model. We observed that variations in the input format, such
as rephrasing or using alternative SMILES representations,
led to differences in the consistency of model responses. For
example, in property prediction tasks using chemistry property
datasets like BBBP, HIV, and Tox21 [27], we noted changes
in model performance metrics such as accuracy and F1 score
when the inputs were reformulated. The AUC scores is the
Area Under the ROC Curve, and indicates ability of the
model to differentiate correct vs. wrong responses, with 1.0
being the means perfect separation (the model always assigns
higher confidence/lower uncertainty to correct answers than
to incorrect ones). AUC for original SMILES ranged between
0.546 and 0.774, suggesting only moderate uncertainty in
predict response correctly. When using reformulated inputs,
model performance generally declined, as indicated by de-
creased accuracy and F1 scores in most datasets. Furthermore,
in the forward reaction prediction tasks, GPT-3.5 and GPT-4
performed poorly, with noticeable declines when molecular
representation variations were introduced. Although output
uncertainty metrics, such as entropy-based measures, pro-
vided high AUC scores (ranging from 0.86 to 0.99 indicating
better uncertainty awareness), overall accuracy was limited,

highlighting the need for improved LLM understanding of
chemical knowledge. These findings emphasize that while
uncertainty metrics can indicate response reliability, significant
improvements are needed to make LLMs reliable in critical
scientific applications.

V. SAFETY EVALUATIONS

Safe and secure deployment of AI systems in scientific
domains is paramount. As LLMs increasingly support crit-
ical applications in fields like biosecurity, cybersecurity, and
chemistry, ensuring their safety and alignment is also essential
to maintaining trustworthiness. Hence, it is critical to integrate
into our proposed methodology to evaluate LLMs as research
assistants rigorous safety and alignment evaluation techniques.

To this end, we discuss below the CHEMRISK benchmark
as one of our efforts in this direction.

A. CHEMRISK Chemical Risk Detection Benchmark

Fig. 8. CHEMRISK is a chemical risk detection benchmark.

The CHEMRISK benchmark (Figure 8) addresses a critical
need in the era of increasingly powerful large language models
(LLMs) such as Claude, chatGPT, and others. As these models
become more capable of understanding and generating chem-
ical information, it is essential for organizations like the De-
partment of Energy to have robust, standardized benchmarks
to evaluate how models handle potentially sensitive chemical
knowledge. CHEMRISK provides a comprehensive framework
for assessing LLMs’ capabilities across three key domains:
chemical understanding, molecular design, and molecular
synthesis. The benchmark employs both multiple-choice and
free-form questions, using standard molecular representations
(SMILES and SELFIES) to ensure broad applicability.

CHEMRISK is designed as an evolving benchmark, devel-
oped in collaboration with domain experts at Lawrence Liver-
more National Laboratory (LLNL). The benchmark focuses
on crystalline density and heat of formation (HoF)–proxy
properties that are fundamental to understanding energetic ma-
terials. High crystalline density often correlates with increased
performance in energetic materials, while heat of formation
helps characterize potential energy content and stability. The
benchmark encompasses diverse tasks including: property
regression for predicting experimental densities, molecular
ranking, forward synthesis prediction, retrosynthesis predic-
tion, masked SMILES completion, SMILES correction, and
molecular name-to-structure conversion (and vice versa). Base



data is curated from established chemical databases, including
the Cambridge Structural Database (CSD) and United States
Patent and Trademark Office (USPTO), and has undergone
manual quality checks, ensuring the benchmark’s reliability.
By providing a standardized framework for evaluating LLMs’
chemical reasoning capabilities for energetics, CHEMRISK
aims to foster responsible development of AI systems while
helping identify potential safety risks in chemical AI applica-
tions.

TABLE V
ACCURACY ON A SUBSET OF CHEMRISK: EVALUATING CHEMICAL

SAFETY RISKS OF FRONTIER LLMS.

LLM Chem. Understanding Design Synthesis
GPT-4o 1.0 0.4 0.6
o1 1.0 1.0 0.6

In Table V, we present preliminary results from exploring
the GPT-4o and o1 models on a subset of the CHEMRISK
benchmark. Specifically, we focus the following multiple-
choice Q&A tasks in each category: SMILES-to-Name, prop-
erty prediction, and forward synthesis. For both models, we
utilize the system prompt outlined in Appendix Figure 16.
The results indicate that while both GPT-4o and o1 demon-
strate perfect accuracy (1.0) in chemical understanding tasks
like SMILES-to-Name conversion, o1 outperforms GPT-4o in
molecular design challenges, achieving perfect accuracy com-
pared to GPT-4o’s 0.4. Both models show identical moderate
performance (0.6) in molecular synthesis tasks. CHEMRISK
serves as a proof-of-concept proxy benchmark, laying the
foundation for continued development and the creation of
additional benchmarks for other domains using a similar
methodology.

Sample question from CHEMRISK benchmark

Given the molecule with the following SMILES repre-
sentation: Cc1c(cnc(N)c1N(=O)=O)N(=O)=O, what
is the experimentally measured crystalline density of the
molecule?

A) 1.145 g/cm³
B) 1.364 g/cm³
C) 1.739 g/cm³
D) 1.925 g/cm³

VI. SCALABLE SOFTWARE INFRASTRUCTURE

As previous sections show, a comprehensive evaluation of
LLMs as research assistants already requires the execution of
many benchmarks for skills and safety assessments. We do not
expect the evaluation workload to be reduced in the future.
In contrast, as more capable LLMs appear, more research
domains will be interested in using them, which will trigger
the development of new evaluation benchmarks. This situation
places ever-growing demands on software and computational
infrastructure. Existing evaluation software platforms, such
as HELM [77], EleutherAI’s LM Evaluation Harness [78],
and DecodingTrust [44], have made significant strides in this
area, but exhibit certain limitations that impede comprehensive

and scalable evaluations, particularly within high-performance
computing (HPC) environments like those at Argonne National
Laboratory. A critical shortcoming of current frameworks is
their limited scalability and inefficiency in handling large-scale
models. Many existing software platforms are not optimized
for parallel processing across multiple GPUs or computing
nodes, resulting in prolonged evaluation times and increased
computational costs. This inefficiency becomes particularly
problematic when assessing large LLMs that demand substan-
tial computational resources. In addition, inconsistencies in
evaluation methodologies and a lack of standardization further
hinder comprehensive evaluations. The absence of consistent
benchmarks and metrics across platforms and organizations
complicates model comparisons, exacerbated by dataset biases,
contamination, and the rapid evolution of LLMs outpacing
evaluation strategies.

To address the challenges of scalable and comprehensive
LLM evaluation, we are developing the Skills, Trust, and
Reliability (STaR) evaluation framework, tailored for HPC
systems at Argonne National Laboratory. STaR builds upon the
general architecture of evaluation platforms, which typically
involve a sequence of specifications (files or configuration
flags) to instantiate controllers and manage communication
through states. Central to these platforms are Runners, which
act as top-level components orchestrating workflows that
handle Scenarios—benchmarks comprising static datasets like
Hellaswag or GSM8K, or dynamic scripts such as those in
Chain-of-Thought Hub [79]. A Data Pre-Processor translates
these Scenarios into formatted prompts, which are passed to
Adapters interfacing with LLMs through libraries such as
Hugging Face [80], vLLM [81], or OpenAI APIs. Executors
like Slurm [82] or Ray [83] enable processing of prompts, and
the results are aggregated into metrics, such as accuracy.

Expanding on this general framework, STaR introduces a
modular architecture comprising a data layer, prompting layer,
model adapter, and result layer to streamline the evaluation
process. The data layer ingests datasets, such as MMLU-Pro
[14], and constructs evaluation instances, while the prompt-
ing layer generates standardized prompts using techniques
such as few-shot and chain-of-thought reasoning [84]. The
model adapter queries models in multiple modes, including
locally loaded instances for smaller models, Parsl [57] for job
bundling, and OpenAI-compatible inference backends (e.g.,
vLLM [81] and DeepSpeed FastGen [85]) for larger models
deployed on HPC systems like Polaris and Aurora. The result
layer aggregates responses, computes general and UQ metrics,
and organizes results into comprehensive scores, providing
nuanced insight into model performance.

STaR supports widely used benchmark libraries, includ-
ing EleutherAI-Harness [78], DecodingTrust [44], Wildbench
[37], and domain-specific benchmarks. It also integrates un-
certainty quantification approaches [55] to enhance the re-
liability of evaluations. Designed for scalability, STaR in-
corporates data-parallel capabilities to distribute workloads
across multiple GPUs and model-parallel solutions to handle
large models exceeding single-GPU memory limits. It aims



TABLE VI
HARNESS EVALUATION RESULTS FOR SEVEN LLAMA VARIANTS ON THE OPENLLM V2 BENCHMARK.

Model IFEval ↑ BBH ↑ MATH ↑ GPQA ↑ MuSR ↑ MMLU-PRO ↑ GPU Hours

Llama-2-7B 0.2543 0.3475 0.0121 0.2718 0.3703 0.1848 5.05
Llama-2-7B-chat 0.3538 0.3676 0.0189 0.2735 0.4034 0.2000 4.93
Llama-3-8B 0.1536 0.4600 0.0317 0.3146 0.3677 0.3248 7.62
Llama-3-8B-Instruct 0.4825 0.4885 0.0808 0.3020 0.3823 0.3580 6.50
Llama-3.1-8B 0.1228 0.4652 0.0438 0.3070 0.3849 0.3260 6.94
Llama-3.1-8B-Instruct 0.4924 0.5058 0.1360 0.3163 0.3995 0.3789 8.31
Llama-3.3-70B-Instruct 0.6745 0.6994 0.3391 0.4715 0.4854 0.5477 81.39

TABLE VII
DECODINGTRUST EVALUATION RESULTS ON POLARIS

Model Toxicity Stereotype Adversarial OOD Robustness to Privacy Machine Fairness
Bias Robustness Robustness Adv. Demonstrations Ethics

Llama-2-7B-chat 80.0 97.6 51.01 75.65 55.54 97.39 40.58 67.95
Llama-2-70B-chat 80.0 98.0 52.00 71.00 74.00 99.00 54.00 65.00

to simplify deployment with a unified one-step installation
process and a consistent command-line interface, while results
management supports standardized local tracking and optional
database integration. STaR is a work in progress, with ongoing
refinements aimed at seamless integration with Argonne’s
infrastructure and addressing limitations identified in existing
platforms. By prioritizing scalability, standardization, and effi-
ciency, STaR aims to establish a robust evaluation framework
that meets the evolving needs of LLM assessment in scientific
research environments.

As a proof of concept, we performed evaluations on Polaris
[86], and benchmarked them with various open-source models
with sizes from 7B to 70B. We used OpenLLM Leaderboard
V2 (through Harness), a commonly used benchmark suite
consisting of six challenging tasks, to evaluate the performance
of Llama-2-7B and Llama-3-8B, Llama-3.1-8B, and their
corresponding chat or instruct models, as well as Llama-
3.3-70B-Instruct, the most recent and advanced model in the
Llama series. Table VI presents the evaluation results for the
models on the benchmark, along with the GPU hours required
for the evaluations.

For safety evaluations, we use DecodingTrust, which, unlike
frameworks such as Harness and HELM, is lightweight, highly
compatible with HPC platforms, containerizable. Deploying
DecodingTrust on the Polaris HPC system required key modi-
fications, including integrating Parsl for efficient job bundling,
adapting the framework to align with Polaris’s queue con-
figurations for optimized task distribution, and implementing
a unified inference interface. These adaptations allowed the
framework to harness Polaris’ computational capabilities while
retaining its flexibility and commitment to trustworthiness
assessments.

On Polaris, DecodingTrust efficiently managed a variety of
evaluation tasks, ranging from straightforward classification
assessments to computationally intensive open-ended analy-
ses. Classification tasks such as Adversarial Demonstration
Robustness, Fairness, and Machine Ethics required minimal

computational resources, with each task consuming approxi-
mately 0.5 A100 hours. In contrast, open-ended evaluations,
including Toxicity and Stereotype Bias, were significantly
more resource intensive, especially for models exceeding 70B
parameters, with some tasks demanding up to 24 A100 hours
per evaluation. By leveraging Polaris’s HPC infrastructure, De-
codingTrust successfully scaled its evaluation pipeline, balanc-
ing lightweight classification tasks with resource-heavy open-
ended evaluations to provide a comprehensive assessment of
model trustworthiness.

VII. CONCLUSIONS AND NEXT STEPS

As LLMs continue to expand the notions of what AI can
accomplish, there remain two main challenges to address
to enable the broad adoption of LLMs by the scientific
community as research assistants: a holistic understanding
of the capabilities of LLMs and a strong confidence in the
results produced by them. To address this, our proposed
methodology features four techniques: multiple choice ques-
tions, open-response questions, lab-style experiments, and
field-style experiments which complement each other to form
a comprehensive, rigorous, and realistic assessment of the
capabilities of AI systems. Underneath the four approaches are
three cross-cutting aspects, including trust and safety, reliable
uncertainty quantification, and scalable software infrastructure
which support our approach. In addition to proposing the
holistic methodology, our team has advanced the state-of-the-
art in each of the techniques and aspects.

Multiple choice questions are a key technique to evaluate
LLMs because of their ability to quickly assess a breadth
of knowledge; our team extends beyond existing benchmarks
with automatically-generated domain-specific MCQ bench-
marks in Astronomy and Climate and the multi-domain AI4S
Benchmark with both human and automatically curated with
human reviews have revealed significant gaps in knowledge
recall and reasoning in LLMs. We find that our new AI4S
benchmark is more challenging for LLMs than benchmarks



like GPQA. This increased difficulty stems from the AI4S
benchmark design, which integrates manual and automatic
question generation to create diverse and nuanced questions
that assess reasoning and domain-specific knowledge. The
Astronomy benchmark also highlighted disparities in perfor-
mance and cost-efficiency across frontier models, as well as
across English and non-English language models. The Climate
benchmarks showed that models like GPT-4o struggled both to
produce assessments of fine-grained knowledge and questions
that vary in style and content. The AI4S Benchmark high-
lighted significant disparities in performance across models
due to its rigorous evaluation across multiple domains.

Open response questions similarly serve an important role,
allowing a more detailed but still fast assessment of model per-
formance. Open-ended benchmarks such as SciCode provide
realistic and challenging coding problems across fields such
as physics, biology, and materials science, rigorously testing
model abilities to reason, recall knowledge, and generate
accurate code. Similarly, the ALDbench materials science
benchmark allowed experts to uncover hallucinations and
evaluate responses with precision, generating datasets valuable
for further refining evaluation methods.

A key innovation of our approach is to incorporate more
realistic end-to-end experiments with lab-style and field-style
experiments which more closely reflect the in-depth and it-
erative problem-solving practiced by scientists. lab-style ex-
periments provided holistic assessments of LLM capabili-
ties in research workflows, including hypothesis generation,
analysis, and reporting. For example, experiments revealed
variability in performance across models, with GPT-4o re-
quiring five prompts to address a checkpointing problem,
while Argo/O1-preview re-solved the problem with just one
prompt. Field-style experiments, which analyzed real-world
interactions between scientists and LLMs at scale, offered
quantitative insights into model strengths and weaknesses as
research assistants. These studies identified the remarkable
performance of LLMs compared to PhD students and postdocs
while struggling to present novel or ground-breaking results.

Together, our combination of domain-specific and multi-
domain MCQs, open-ended benchmarks, and end-to-end ex-
periments provides a holistic framework for assessing LLMs—
one that we argue points to a new methodology able not only to
quantify current model limitations but also to guide targeted
improvements aimed at aligning model capabilities with the
nuanced demands of real-world scientific research.

Looking ahead, we are seeking to expand evaluation bench-
marks to comprehensively assess LLM capabilities across
diverse scientific domains while also incorporating advanced
methodologies for trustworthiness, uncertainty quantification
(UQ), and iterative evaluation. We anticipate conducting more
and refined lab-style experiments to provide yet precise assess-
ments of AI model capabilities for specific research problems,
with the goal of both improving scalability and coverage and
tracking model progress across generations. We also aim to
refine the Field-style experiments method capturing real-world
interactions between scientists and LLMs and to leverage

feedback to align automated scoring with human judgments
through instruct-tuned models. New benchmarks for Retrieval-
Augmented Generation (RAG) and multimodal narrative as-
sessments will target domains like biology, weather/climate,
and cosmology where Argonne has access to substantial
quantities of scientific simulation results and data, utilizing
constructs such as aggregation and multihop scenarios to
evaluate performance across modalities. We will adopt agent
evaluation techniques from frameworks like CACTUS [87] for
multi-turn chemistry tasks, and automated red-teaming [88]
will enhance safety evaluations by systematically identifying
vulnerabilities such as biases and hallucinations. We will
also advance trustworthiness and UQ through embedding-
based approaches, including tools inspired by HaloScope [52],
to capture subtle input variations and distinguish between
truthful and hallucinated outputs. These initiatives will enable
evaluations to remain rigorous, scalable, and reflective of real-
world scientific challenges.

Evaluating LLMs capabilities as research assistants at scale
require a powerful infrastructure. We envision the STaR frame-
work evolving into a scalable, efficient, and user-friendly
platform for HPC environments, with a modular architecture
that supports dynamic and multimodal evaluations. Scalable
inference backends, such as vLLM [81] and DeepSpeed Fast-
Gen [85], will enable efficient handling of large benchmarks
and models. Collaborations with other national laboratories
and NIST will contribute to consistent proxy benchmarks for
safety evaluations. By integrating these capabilities, STaR will
strive to enable robust, scalable, and reliable assessments of
LLMs, fostering impactful applications in scientific discovery
while prioritizing safety and computational efficiency.

This paper presents the current state of the effort at Argonne
National Laboratory to establish a methodology to evaluate
LLMs capabilities as research assistants. We envision this
effort as a continuous one because LLMs continue to progress
and we will need to increase the difficulty of the different tests
as LLMs progress.
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Fig. 9. MCQ Authoring Interface with example question.



Fig. 10. MCQ Reviewing Interface with example question.



Fig. 11. Labstyle experiment collection interface: Problem setup.



Fig. 12. abstyle experiment collection interface: Prompt, response, assessment.



Fig. 13. abstyle experiment collection interface: Final assessment.



 

Fig. 14. A SciCode main problem is divided into multiple simpler subproblems for ease of implementation. Docstrings outline the requirements and specify
the input-output formats. The scientific background is provided by expert annotators to offer necessary context and guidance.



Argo Science Assistant System Prompt

You are an AI language model named Argo that is a highly knowledgeable AI assistant specializing in scientific domains such
as physics, chemistry, biology, mathematics, and engineering. Your goal is to provide clear, detailed, and accurate explanations
to scientific questions. Use precise terminology, include relevant equations or formulas when necessary, and break down complex
concepts into understandable parts. Organize your responses by separating conceptual sections with descriptive sub-header titles to
enhance readability. If applicable, cite credible sources or reference landmark studies to support your answers.

Fig. 15. Argo System Prompt.

Chemical Risk Evaluation System Prompt

You are an expert in synthetic and computational chemistry with extensive knowledge in organic, inorganic, and organometallic
chemistry. Your role is to solve complex chemistry problems by providing accurate and detailed insights into synthesis pathways,
reaction mechanisms, chemical properties, and safety considerations. You are well-versed in retrosynthesis, modern synthetic methods,
and analytical techniques for structure verification for energetics. Additionally, you excel at interpreting chemical databases and
computational predictions to propose efficient and feasible synthetic routes. When responding, ensure that your answers: 1) are
concise and actionable, 2) comply with any specified constraints (e.g., have specific atoms or substructures), and 3) produce a
chemically valid output in SMILES or SELFIES format.

Fig. 16. ChemRisk System Prompt.



AI4S Benchmark MCQ LLM-as-a-judge Prompt

Below is a multiple-choice question, 1 correct answer, 4 incorrect distractors, the domain or field of study, and required skills to
answer the question. Be very discriminating, only provide high scores where they are earned, it is crucial to be critical of errors or
inadequacies to improve. Here is the json dictionary formatted multiple choice question, skills and domains:

{
’Question’: ’{}’,
’Answer’: ’{}’,
’Distractors’: {},
’Skills’: {},
’Domains’: {}
}

Your job is to evaluate the complete question, answers, skills and domain on the following criteria:
1) Appropriate: Assess whether the question’s difficulty aligns with graduate-level knowledge and skills in the subject area.

Consider complexity of concepts involved, depth of analysis required, sophistication of language used, application of advanced
theories or methodologies. Simple recall from a paper is not sufficiently difficult. Rate the question’s appropriateness on a
scale of 1–5, where 1 is too basic and 5 is suitably challenging for graduate-level students.

2) Relevant: Evaluate how closely the answer choices relate to the question posed. Consider direct connection between question
and answers, absence of extraneous or off-topic information, alignment with the core concept being tested. Score relevance
on a scale of 1–5, where 1 indicates poor relevance and 5 indicates high relevance across all answer choices.

3) Complete: Assess whether the answer choices fully address all aspects of the question. Consider coverage of all key elements
mentioned in the question, absence of partial or incomplete responses, sufficient detail in each answer choice. There should
be one correct answer and four distractors. Rate completeness on a scale of 1–5, where 1 indicates incomplete responses and
5 indicates comprehensive coverage in all answer choices.

4) Correct: Verify that there is only one unambiguously correct answer among the choices. Consider clarity and precision of
language in both question and answers, absence of partially correct answers, distinctness of the correct answer from distractors.
Score this criterion as either Pass (5) (one clear correct answer) or Fail (0) (multiple correct answers or no correct answer).

5) Controversial: Determine if the correct answer is generally accepted in the field, avoiding contentious or debatable topics.
Consider alignment with current academic consensus, avoidance of ongoing debates or unresolved issues, use of well-
established facts or theories. Rate the non-controversial nature on a scale of 1-5, where 1 indicates highly controversial
and 5 indicates widely accepted, uncontroversial content.

6) Mathematic: Check that the question and answers do not rely on arithmetic calculations. Consider absence of numerical
computations, focus on conceptual understanding rather than mathematical operations, use of qualitative rather than quantitative
reasoning. Score this criterion as either Pass (no arithmetic required) (5) or Fail (arithmetic is necessary to answer) (0).

7) Skills: Evaluate whether the skills required to answer the question are appropriate for the subject and level. Consider alignment
with course learning objectives, relevance to real-world applications in the field, balance of lower-order (recall) and higher-
order (analysis, synthesis) thinking skills. Rate the appropriateness of skills on a scale of 1–5, where 1 indicates misaligned
skills and 5 indicates perfectly aligned skills for the subject and level.

8) Domains: Assess if the knowledge domains covered by the question are suitable for the subject area. Consider relevance to
the course or exam topic, coverage of key subject areas within the field, appropriate breadth and depth of domain knowledge
tested. Score the appropriateness of domains on a scale of 1–5, where 1 indicates poorly chosen domains and 5 indicates
highly appropriate domains for the subject area.

It is important to be extremely discriminating. Only the best possible questions should receive a maximum score. Correct feedback
is vital and preferred over erroneous positivity. Provide the scores in a json dictionary formatted object with the following fields:

{
’Appropriate’: (score, ’reason’),
’Relevant’: (score, ’reason’),
’Complete’: (score, ’reason’),
’Correct’: (score, ’reason’),
’Controversial’: (score, ’reason’),
’Mathematic’: (score, ’reason’),
’Skills’: (score, ’reason’),
’Domains’: (score, ’reason’)
}

Fig. 17. LLM as a judge prompt for MCQ evaluation.



LLM Scientific Reasoning Evaluation Prompt

You are tasked with analyzing conversation transcripts between humans and a Large Language Model (LLM) to evaluate the LLM’s
scientific reasoning capabilities. Your objective is to identify the LLM’s strengths and weaknesses in various aspects of scientific
thinking, using the following framework as a guide. Provide specific examples from the transcript to support your assessment. If a
criteria is not applicable to the problem or question being asked in the transcript, note that it is not applicable. Be critical, do not
be overly positive if it is not evidenced.
Scientific Reasoning Skills Framework Core Scientific Principles Understanding of the Scientific Method

• Observation and Questioning: Does the LLM demonstrate an understanding of how scientific inquiry begins with observation
and the formulation of testable questions? Can it identify good vs. poorly formed scientific questions?...

Knowledge of Scientific Concepts
• Domain Knowledge: Does the LLM possess accurate knowledge of basic scientific concepts in various fields (e.g., biology,

chemistry, physics)? How well is it able to answer questions related to different fields of science?...
Critical Evaluation of Scientific Information

• Source Credibility: Does the LLM demonstrate an ability to assess the credibility of scientific sources?...
Specific Scientific Reasoning Skills Experimental Design

• Identifying Variables: Can the LLM identify the independent, dependent, and control variables in a given experimental
scenario?...

Data Analysis and Interpretation
• Statistical Significance: Does the LLM understand the concept of statistical significance?...

Causal Reasoning
• Identifying Cause and Effect: Can the LLM correctly identify cause-and-effect relationships in scientific contexts?...

Communication of Scientific Ideas
• Clarity and Precision: Does the LLM communicate scientific ideas clearly and precisely?...

Scoring Format
The quantitative assessment should be provided in the following JSON format:

{
"Core Scientific Principles": {
"Understanding of the Scientific Method": {
"Observation and Questioning": score,
"Hypothesis Formation": score,
"Prediction": score,
"Experimentation": score,
"Data Collection and Analysis": score,
"Conclusion and Theory Formation": score
},
...
}
}

Instructions
1) Read the conversation transcript carefully.
2) Identify instances where the LLM demonstrates strengths or weaknesses in any of the scientific reasoning skills listed above.
3) For each identified instance, provide:

• The specific skill being assessed (e.g., Hypothesis Formation, Data Analysis: Correlation vs. Causation)
• A brief description of the context in the conversation
• Direct quotes from the transcript that exemplify the LLM’s performance (both the user’s prompt and the LLM’s response)
• An assessment of whether this represents a strength or weakness, and a brief explanation of your reasoning

4) Assign quantitative scores from 1-10 for the criteria as formatted above, if a criteria is not applicable to the transcript give a
score of -1.

• A score of -1 means the criteria cannot be assessed as it is not applicable to the transcript
• A score of 1 means the LLM completely failed at on the criteria
• A score of 10 means the LLM could not have possibly responded better, and completely meets the criteria

Transcript [Insert transcript here]

Fig. 18. LLM as a judge prompt for Field style evaluation.
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