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Abstract

Self-supervised learning (SSL) methods have emerged as
strong visual representation learners by training an image
encoder to maximize similarity between features of different
views of the same image. To perform this view-invariance
task, current SSL algorithms rely on hand-crafted augmen-
tations such as random cropping and color jittering to cre-
ate multiple views of an image. Recently, generative diffu-
sion models have been shown to improve SSL by providing
a wider range of data augmentations. However, these diffu-
sion models require pre-training on large-scale image-text
datasets, which might not be available for many special-
ized domains like histopathology. In this work, we introduce
Gen-SIS, a diffusion-based augmentation technique trained
exclusively on unlabeled image data, eliminating any re-
liance on external sources of supervision such as text cap-
tions. We first train an initial SSL encoder on a dataset
using only hand-crafted augmentations. We then train a
diffusion model conditioned on embeddings from that SSL
encoder. Following training, given an embedding of the
source image, this diffusion model can synthesize its diverse
views. We show that these ‘self-augmentations’, i.e. gener-
ative augmentations based on the vanilla SSL encoder em-
beddings, facilitate the training of a stronger SSL encoder.
Furthermore, based on the ability to interpolate between
images in the encoder latent space, we introduce the novel
pretext task of disentangling the two source images of an in-
terpolated synthetic image. We validate Gen-SIS’s effective-
ness by demonstrating performance improvements across
various downstream tasks in both natural images, which are
generally object-centric, as well as digital histopathology
images, which are typically context-based.

1. Introduction
In recent years, self-supervised learning (SSL) [1, 6, 10,
20, 23, 25, 40, 51] has emerged as a standard approach for
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Figure 1. (a) Vanilla augmentations used in SSL such as random
cropping, color jittering. (b) Generative augmentations (ours) are
conditioned on a single source image. (c) Interpolated augmen-
tations (ours) conditioned on a pair of images. In the Gen-SIS
framework, we use (b) for view augmentation, and (c) for the dis-
entanglement pretext task, both in conjunction with (a).

learning robust visual representations that excel across var-
ious downstream tasks. By optimizing the model weights
on pretext tasks, like self-prediction or view invariance,
SSL enables models to learn discriminative features with-
out requiring labeled data. Specifically, approaches such as
DINO [6], BYOL [20], and SimCLR [10] have achieved no-
table success, producing high-quality features that transfer
effectively to diverse downstream applications. This suc-
cess stems from view-invariance tasks, which encourage
models to learn high-level discriminative features from the
image. Formulating view-invariant tasks relies heavily on
hand-crafted augmentations, such as cropping and color jit-
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tering, to create multiple views of an image. Stronger aug-
mentations typically lead to more robust features, as they
increase the difficulty of the invariance task [20].

On a parallel front, diffusion models have achieved im-
pressive quality in image generation, driven by innovations
in architecture [41, 48], sampling methods [52], and con-
ditioning techniques [28, 46]. This success has led to an
interest in using diffusion models, especially large founda-
tion models like Stable Diffusion (SD), for data augmenta-
tion [54, 55]. Given SSL’s reliance on augmentations, dif-
fusion models could significantly improve SSL by generat-
ing images with non-trivial variations in background, shape,
and position of objects, while preserving the original high-
level semantics (Fig. 1 (b))

Recent work by Tian et al. [54] has investigated using
synthetic data generated from Stable Diffusion (SD) as mul-
tiple views for SSL. However, employing SD as an aug-
menter in SSL has some drawbacks: (1) It is challenging
to adapt SD in domains underrepresented in SD’s training
data, LAION-5B [50]. Since it is a general image foun-
dation model, it is expected that it cannot generate high-
quality images from specific domains such as histopathol-
ogy. The low-quality images generated by SD cannot be
used for SSL as they are highly inaccurate (see supplemen-
tary). (2) SD-scale foundation models are usually not avail-
able for other domains, outside natural images, and training
them from scratch is a task beyond the scope of improving
an SSL encoder. (3) Apart from synthesizing variations of
an image, it is not straightforward to perform other kinds
of augmentations by controlling the conditioning in text-to-
image models. For instance, interpolating between two im-
ages would require using an LLM to first ‘interpolate’ the
two captions and then synthesize a new image. (4) As a text-
conditioned model, SD is trained on paired image-text data,
which can be seen as conflicting with the SSL principle of
training on unlabeled data.

To avoid these issues, in this paper, we introduce Gen-
SIS, a method to train a diffusion model on the same unla-
beled data as an SSL model and use it as an effective aug-
menter for the SSL without any additional supervision, such
as text or class labels. We adopt the term self-augmentation
to highlight the distinction between generative augmenta-
tions that rely on external supervision and our strictly self-
supervised approach.

We begin by pre-training an SSL encoder on real im-
ages from the pre-training dataset, using the original hand-
crafted augmentations. Next, we train a latent diffusion
model [48] (LDM), conditioned on image embeddings ex-
tracted from this initial SSL encoder. Once trained, the
LDM is then used to synthesize novel images for training
a new enhanced SSL encoder.

Gen-SIS expands the data augmentation using self-
augmentations from the diffusion model, moving beyond

traditional hand-crafted augmentations. In a view-invariant
setting, a pair of real and synthetic images from our diffu-
sion model can act as different views of the same image,
strengthening the augmentation process (Fig. 1 (b)).

Furthermore, we utilize the generative model’s capabili-
ties and propose a novel pretext task that complements the
base SSL task by focusing on disentangling shared concepts
between pairs of images. The trained LDM can interpolate
between images by interpolating between the image embed-
dings provided as conditioning. The generated image se-
mantically blends concepts from a given pair of real images
(Fig. 1 (c)). We then task the visual encoder with identify-
ing features from the original pair of images used in gen-
erating the interpolated image. This additional pretext task
(termed as disentanglement pretext task) forces the model
to learn and distinguish various object, texture, and shape-
level features. Solving this task presents a greater challenge
to the encoder, significantly enhancing its performance on
downstream tasks.
In summary, our contributions are:
• We introduce Gen-SIS, the first generative diffusion-

enhanced SSL approach that requires only unlabeled data.
• We propose a novel disentanglement task, as an additional

pretext task in self-augmentation enhanced SSL training.
• We extensively evaluate our method on ImageNet-1K and

benchmark the Gen-SIS pretrained encoder across a range
of downstream tasks such as classification, retrieval, copy
detection, and video segmentation, achieving notable per-
formance gains over vanilla SSL.

• Using Gen-SIS, we extend self-augmented SSL to
histopathology images, a domain with no foundation gen-
erative models, demonstrating the effectiveness of our
self-contained approach.

2. Related work

Self-supervised Learning: Self-supervised learning [17]
aims at learning generic representations from large-scale
unlabeled data through a pretext task. Pretext tasks can be
mainly classified into self-prediction and view-invariance
tasks. Self-prediction methods (MAE [24], MaskFeat [58])
involve masking parts of an image and then training the
model to reconstruct the missing information based on the
remaining context. View-invariant methods task the model
to output similar features for two augmented views of the
same image. This involves contrastive methods like Sim-
CLR [9], MoCo [22], NNCLR [15] and self-distillation
methods like BYOL [21], DINO [6], iBOT [60], and DI-
NOv2 [40]. View-invariant methods typically rely on hand-
crafted augmentations to derive multiple views of the same
image for pretext tasks.
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Figure 2. Overview of the Gen-SIS-framework: It contains 2 key steps 1) Self-Augmentation using Embedding conditioned LDM (E-
LDM), 2) SSL training with augmentations from E-LDM. T represents vanilla augmentations, Ts represents generative augmentation
from single image, and Ti represents interpolated augmentation from two images. Note that in conjunction with Ts and Ti, we applied
vanilla augmentation. Pull represents the vanilla SSL pretext task, and Disentangle represents our proposed pretext task with interpolated
augmentation.

Diffusion Models: Diffusion models were first introduced
in the seminal work of Ho et al. [30]. Subsequent ad-
vancements included class-conditioning and guidance tech-
niques for more controlled generation [29, 46], and accel-
erated sampling techniques [52]. Latent diffusion models
[7, 41, 49] enable high-resolution image generation by per-
forming the diffusion process in a smaller latent space. In
specialized domains such as histopathology, where labeled
image-text data is limited, prior works have adopted image
embedding-conditioned diffusion models [19, 37] to over-
come these constraints.
Data augmentation with Diffusion models: Recent re-
search has utilized diffusion models for data augmentation,
particularly in supervised settings [2, 18, 19, 55]. The stud-
ies most closely related to our research are Stable-rep [54]
and SynCLR [31]. Stable-rep leverages captions from the
CC-12M dataset to generate synthetic samples from Stable
Diffusion [48] (SD), using them as multiple positive pairs
in the SSL training.

SynCLR, following a similar approach to Stable-Rep,
uses ImageNet object categories to construct text prompts.
However, SD-scale text-to-image models are usually un-
available beyond natural images.

Moreover, models trained on large-scale internet
datasets, like LAION-5B, may accidentally contain exam-
ples from common benchmarks such as ImageNet. Previous
works [5, 55] have shown that pretrained diffusion models
can leak training data, thus potentially inflating SSL perfor-
mance.

3. Preliminary

DINO: In this study, we use DINO [6] as our vanilla self-
supervised learning (SSL) method. DINO (self-distillation

with no labels) is a teacher-student framework in which two
augmented views of an image, I ′ and I ′′, are processed sep-
arately by the student gθs and teacher gϕt

networks. The
two augmented views are generated using standard aug-
mentations, including cropping, color jittering, Gaussian
blur, and solarization. Both teacher and student share the
same architecture, with a backbone encoder and a projec-
tion head, and output a probability distributions P over K
dimensions.

Ls = gθs(I
′), P k

s =
exp(Lk

s/τs)∑K
j=1 exp(L

j
s/τs)

, (1)

Lt = gϕt(I
′′), P k

t =
exp((Lk

t − ck)/τt)∑K
j=1 exp((L

j
t − cj)/τt)

, (2)

H(Pt, Ps) = −Pt log(Ps), θs ← Optimizer(H, θs) (3)

The student’s output (logits Ls) is sharpened using a
low-temperature τs softmax (Eq. 1), while the teacher’s out-
put (logits Lt) undergoes centering with a moving average
of the teacher outputs c and softmax sharpening with τt to
prevent collapse during training (Eq. 2). The student net-
work is optimized to match the teacher’s probability distri-
bution using a cross-entropy loss H (Eq. 3). The teacher
network is updated as exponential moving average (EMA)
of the student network’s weights.
Latent Diffusion Models: Latent Diffusion Models
(LDMs) [48] synthesize images efficiently by learning to
draw samples from a compressed image latent space in-
stead of operating directly on pixels. This latent space is
defined by a learned Variational Autoencoder (VAE), with
a VAE encoder that maps images from pixels to latents, and
a VAE decoder that maps the latent back to pixel space.
Using the diffusion denoising objective [30], LDMs train
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a U-Net denoiser in the latent space. To control the gen-
erated images, the U-Net is usually conditioned on addi-
tional information about the images, such as class labels or
text prompts. LDMs utilize a cross-attention mechanism
between embeddings of the conditioning information and
the U-Net features to guide the image synthesis, rendering
the conditioning framework flexible to the choice of condi-
tioning signals.

4. Method
In this section, we introduce Gen-SIS (see Fig. 2), a frame-
work that leverages unlabeled data to train a diffusion model
and subsequently enhances self-supervised learning (SSL)
through novel self-augmentations using this learned diffu-
sion model. First, in Sec. 4.1, we describe the embedding-
conditioned Latent Diffusion Model (E-LDM), which gen-
erates synthetic images based on the embeddings of source
images. Then in Sec. 4.2, we detail how synthetic images
(self-augmentations) generated by the E-LDM can be inte-
grated into SSL to improve it. We focus on two types of
self-augmentations: (1) Generative augmentations, where
augmentations are created from a single source image, and
(2) Interpolated augmentations, where an interpolated im-
age is generated from two source images and used in train-
ing for a novel disentanglement pretext task.

4.1. Embedding conditioned LDM
We follow the LDM [48] framework for synthetic image
generation, conditioning the LDM with the embedding ex-
tracted from an image, and refer to this setup as E-LDM
(embedding-conditioned LDM). Following the approach of
prior work [19], we first train an image encoder on unla-
beled real images using a standard SSL algorithm (DINO),
and then use this encoder as the conditioning encoder to
condition the diffusion model. This design allows our E-
LDM to be trained in a fully self-supervised manner, with-
out relying on any auxiliary information about the images.
We term the synthetic images generated from E-LDM as
self-augmentations. As conditioning, we choose the output
of the DINO backbone, which is a D-dimensional vector e
(embedding). Once trained, we can then prompt the E-LDM
by giving it an embedding of a real image e; it will synthe-
size a variation Is = E-LDM(z, e), where z ∼ N (0, I)
is an initial Gaussian noise used in sampling. We use the
deterministic DDIM [52] sampling algorithm, which maps
every (z, e) pair to an image Is.

4.2. Enhancing SSL using self-augmentations
With real images as sources for E-LDM conditioning, we
use two types of self-augmentations: 1) Generative Aug-
mentations, 2) Interpolated Augmentations.
Generative Augmentations: In the generative augmenta-
tion setting, a synthetic image is generated using a single

real image as the source. This involves first extracting an
embedding e from the source image using the conditioning-
encoder, and then guiding the image generation process
with that embedding to create a synthetic image Is =
E-LDM(z, e). As illustrated in Fig. 1 (b), generative aug-
mentations introduce novel variations in the shape, size, and
position of objects, as well as changes in the background,
while preserving the semantic content of the objects in the
image. As shown in Fig. 2, to integrate generative augmen-
tations into SSL, we use the real image and a corresponding
synthetic image as an input pair for the SSL pretext task.
We also apply hand-crafted augmentations to both real and
synthetic images.
Interpolated Augmentations: An interesting property of
diffusion models is their ability to generate an image that
partially resembles each source image when conditioned
on embeddings interpolated from two sources, as demon-
strated in prior works [19, 33, 56]. We leverage this prop-
erty to produce an interpolated synthetic image from two
real source images, which we use to perform a new pre-
text task during the SSL training. With embeddings e1
and e2 representing the two source images (I1, I2), and an
interpolation ratio α, we compute an interpolated embed-
ding eint using spherical linear interpolation (SLERP) [56]
eint = SLERP(e1, e2, α). We choose SLERP over linear in-
terpolation since high-dimensional vectors are concentrated
near the surface of the unit sphere. This interpolated em-
bedding serves as the conditioning to generate the synthetic
interpolated image, Iint = E-LDM(z, eint).

Since the interpolated image contains components of
both source images, we propose a disentanglement task
where the network learns to separate the distinct features
of each source image used in the interpolation. Specifi-
cally, given two source images (I1, I2), an interpolating ra-
tio (α), and the interpolated synthetic image (Iint), we pass
Iint through the student network, to obtain the student prob-
ability Pint.

Lint = gθs(Iint), P k
int =

exp(Lk
int/τs)∑K

j=1 exp(L
j
int/τs)

(4)

To derive a target teacher output for the disentanglement
task, we pass I1, I2 to the teacher network individually, and
interpolate the teacher head output (logits Lent) using α:

Lent = αgϕt(I1) + (1− α)gϕt(I2). (5)

This is then passed through the centering and sharpening
operation to get the probability over the K dimensions

P k
ent =

exp((Lk
ent − ck)/τt)∑K

j=1 exp((L
j
ent − ck)/τt)

(6)

Finally, we compute the disentanglement loss Eq.7 using
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the cross-entropy between the student and teacher predic-
tions.

Ldisentangle = −Pent log(Pint) (7)

To optimize this loss, the student must implicitly disen-
tangle components of the pair of source images within the
interpolated image, leading us to call this a disentangle-
ment pretext task. This task is more challenging and can
yield better representation learning compared to optimizing
solely for single-source augmentations. With single-source
images, the student only needs to extract features for a sin-
gle dominant component to minimize the loss, whereas dis-
entangling multiple components in an interpolated image
can help the model learn more discriminative features.

In Gen-SIS, we use both types of self-augmentations,
generative augmentation with vanilla dino loss and interpo-
lated augmentation with Ldisentangle. We provide the pseudo
code in the supplementary.

5. Experiments: Natural Images
In this section, we apply the Gen-SIS framework to en-
hance SSL pre-training in the natural image domain. Our
experiments below empirically demonstrate improvements
in encoder pre-training using Gen-SIS compared to the
vanilla DINO on diverse downstream tasks: classification,
retrieval, copy detection, and video segmentation. We also
provide evaluation on out-of-distribution data in the supple-
mentary. Although we conduct experiments with DINO,
our self-augmentation technique is a general method that
can be readily extended to other SSL approaches.

5.1. Setup
Training: Aligning closely with the experimental setup of
DINO [6], we pre-train the models on the ImageNet-1K
dataset [13]. To begin, we reproduce the pre-training of
ViT-S/16 model using the DINO framework (trained only
on real images) on a 100 epoch setting with DINO’s code-
base. We use this model as the baseline and conditioning
encoder for our E-LDM. For our enhanced SSL training,
we improve DINO with the Gen-SIS framework and call
the method Gen-DINO. In Gen-DINO, we pre-train the ViT-
S/16 model with generative and interpolated augmentations.
Both DINO and Gen-DINO are trained for 100 epochs from
scratch with a cosine annealing learning rate schedule with
an initial value of 5 × 10−4, a 10-epoch warmup period,
and a linear scaling rule with respect to the batch size [11].
The weight decay also follows a cosine schedule, from 0.04
to 0.4. We use the AdamW optimizer with a batch size of
1024. We use generative and interpolation augmentation in
Gen-SIS, in conjunction with the default handcrafted data
augmentations of DINO, such as color jittering, cropping,
flipping, Gaussian blur, solarization, and multi-crop. For
both vanilla DINO and Gen-DINO, by default, we use 8

local crops; in ablations, we further show the performance
without using local crops. For interpolated image genera-
tion, we use α = 0.5.

We train the LDM as an embedding conditioned model
following [19]. The LDM configuration includes a VQ-f4
autoencoder that downsamples images from 256×256×3 to
64×64×3. For ImageNet experiments, we train the U-Net
denoiser from scratch. We set the learning rate to 10−4 with
a warmup period of 1000 steps. To generate images, we
use DDIM sampling [52] with 50 steps and apply classifier-
free guidance [28]. We generate self-augmentations using
E-LDM in an offline manner and read them from the disk
during the Gen-DINO training. More details are provided
in the supplementary.
Evaluation: We employ standard protocols used in
DINO [6], such as the training-free k-nearest neighbor clas-
sifier (k-NN) and training a linear classifier (linear-probing)
on frozen features. As highlighted in the DINO paper, linear
probing is sensitive to hyperparameter variations, and hence
we consider k-NN to be the preferred choice for evaluation
given its robustness.

5.2. Comparing with DINO on ImageNet-1K
In Tab. 1, we compare the performance of ViT-S (patch
size of 16) pre-trained using our Gen-DINO method against
the vanilla DINO method with a 100-epoch schedule on the
ImageNet-1K validation set. We observe that, compared to
DINO, our method performs significantly better on k-NN
evaluation, with an improvement of 1.5% in Top-1% accu-
racy. The linear probing evaluation shows an improvement
of 0.5%. This evaluation indicates that Gen-DINO enhances
representation learning through generative and interpolated
augmentations, particularly by learning to solve the more
challenging pretext task of disentangling two objects in the
object-centric images found in ImageNet-1K. We further
demonstrate the improvements of individual components in
ablations (Sec. 5.5).

5.3. Nearest neighbor retrieval
Here, we investigate the effectiveness of Gen-DINO
in enhancing performance compared to DINO on tasks
that rely on nearest neighbor retrieval. Specifically, we
evaluate its impact on image retrieval and copy detection
tasks. We closely follow the settings described in DINO [6].

Image Retrieval: We utilized the Revisited [44] Ox-
ford and Paris image retrieval datasets [42]. We used
the corresponding Medium (M) and Hard (H) splits with
query/database pairs and reported the Mean Average Preci-
sion (mAP). In Tab. 2, we compare the performance of ViT-
S pre-trained with DINO and Gen-DINO on ImageNet-1K,
using them as off-the-shelf frozen encoders for retrieval on
these datasets. Following feature extraction, we apply k-
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Table 1. Top-1% accuracy on ImageNet-1K
validation set for ViT-S pre-trained through
DINO and Gen-DINO and evaluated using k-
NN and linear probing (LP) evaluation. k-NN
is a training free evaluation.

Method Epochs k-nn LP

DINO 100 69.4 74.0
Gen-DINO 100 70.9 74.5

Table 2. Image retrieval. We compared
the mAP on the Oxford (ROx) and Paris
(RPar) datasets using frozen features from ViT-
S pre-trained with DINO and Gen-DINO on
ImageNet-1K.

Method Epochs ROx RPar
M H M H

DINO 100 30.7 10.8 55.6 26.1
Gen-DINO 100 33.3 11.2 57.2 26.9

Table 3. Copy detection. We report
performance (mAP) using the Copy-
days “strong” subset [14]. We compare
the features from ViT-S pre-trained
with DINO and Gen-DINO.

Method Epochs Dim mAP

DINO 100 768 80.2
Gen-DINO 100 768 82.5

NN for retrieval. We observe that Gen-DINO features out-
perform DINO features for this retrieval task by up to 2.6%
on the medium split and up to 0.8% on the hard split across
the two datasets.
Copy Detection: We use the “strong” subset of the INRIA
Copydays dataset [14] and report the mean average preci-
sion (mAP). The task is to identify images that have been
distorted by blur, insertions, print and scan, among other
modifications, similar to the protocol in DINO. We perform
this task using cosine similarity on the frozen features ob-
tained from ViT-S pre-trained with DINO and Gen-DINO.
We use the concatenation of the output [CLS] token and the
GeM [45] pooled output patch tokens, resulting in a 768-
dimensional descriptor for ViT-S. In Tab. 3, we show that
compared to vanilla DINO, our method substantially im-
proves performance by 2.3%.

5.4. Discovering the semantic layout of scenes

Previously, DINO [6] demonstrated the emerging properties
of self-supervised ViTs, particularly their ability to explic-
itly represent scene layouts, with object segmentation vis-
ible in the self-attention modules of the last block. Here,
we investigate how Gen-SIS’ disentanglement pretext task,
based on interpolated images, further enhances the model’s
capability for object segmentation without any supervision.
Video Instance Segmentation: In Tab. 4, we evaluate the
segmentation capabilities of self-supervised ViTs with Gen-
DINO and compare them to vanilla DINO. Specifically, we
used the DAVIS-2017 video instance segmentation bench-
mark [43]. Following the experimental protocol in DINO,
we segment scenes using a nearest-neighbor approach be-
tween consecutive frames, utilizing the frozen features for
the output patch tokens. We observe that our Gen-DINO
pre-trained ViT-S performs significantly better for both the
mean region similarity (Jm) and mean contour-based accu-
racy (Fm) metrics, demonstrating the effectiveness of the
disentanglement task in enabling the model to more accu-
rately understand object layout. We also compared it to
Gen-DINO without the disentanglement task, i.e., DINO
with only generative augmentation, and found that it per-
formed worse than Gen-DINO. This is additional evidence
that the disentanglement pretext task improves performance
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Figure 3. [CLS] token attention map of DINO and Gen-DINO av-
eraged across all heads and overlayed on real and interpolated im-
age. Gen-DINO’s attention covers higher portion of object patches
than DINO.

in understanding object details.

Table 4. DAVIS 2017 Video Object Segmentation. We com-
pared the performance of frozen features from ViT-S pre-trained
with DINO and Gen-DINO on ImageNet-1K for the task of video
instance tracking. Mean region similarity (Jm) and mean contour-
based accuracy (Fm) metrics are reported. We use an image reso-
lution of 480p.

Method Epochs (J&F)m Jm Fm

DINO 100 61.45 59.67 63.23
Gen-DINO w/o disent. 100 61.66 59.87 63.45

Gen-DINO 100 62.07 60.52 63.62

Probing the self-attention map: In Fig. 3, we visualize the
self-attention of the [CLS] token overlayed on a sample real
image and on a sample interpolated image using pre-trained
ViT-S using DINO and our Gen-DINO model. Consistently,
for both real and generated images, Gen-DINO’s attention
map covers the object patches (16×16 regions) more com-
pared to DINO. This was also reflected in the significantly
improved mean region similarity Jm in Tab. 4.
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5.5. Ablations

Here, we study the effect of various components in Gen-
DINO that are crucial for enhancing the performance of
the encoder compared to vanilla DINO SSL. All ablations
are conducted using ViT-S pre-trained for 100 epochs on
ImageNet-1K and evaluated on its validation set. Top-1%
k-NN classifier accuracy is reported.
Importance of Disentanglement pretext task: In Tab. 5,
we investigate the effect of using only generative augmen-
tation images without the proposed disentanglement pre-
text task (Gen-DINO wo/ disent.) and interpolated aug-
mentation, comparing it to vanilla DINO and Gen-DINO.
We observe that, by itself, generative augmentation pro-
vides a 0.5% improvement compared to the larger 1.5%
improvement seen in Gen-DINO over vanilla DINO. This
emphasizes that, beyond simple data augmentation, gener-
ative models can significantly enhance the SSL framework
when used properly (in our case the interpolation augmen-
tation and disentanglement pretext task), motivating future
research.

Table 5. Effect of disentangle-
ment (disent.) pretext task in
Gen-DINO.

Method k-NN

DINO 69.4
Gen-DINO wo/ disent. 69.9 (+0.5)

Gen-DINO 70.9 (+1.5)

Table 6. Effect of inter-
polation ratio α on Gen-
DINO.

α k-NN

0.2, 0.4, 0.6, 0.8 70.0
0.4, 0.6 70.1

0.5 70.9

Effect of Interpolation Ratio: In Tab. 6, we explore the
effect of interpolation ratio (α) in our framework. By
default, we use α = 0.5 for interpolated image genera-
tion. However, other values or even randomly chosen val-
ues can be used as well. Therefore, we experiment with
α = {0.2, 0.4, 0.6, 0.8} and α = {0.4, 0.6}. We found that
using values other than α = 0.5 reduces the model’s perfor-
mance.

To understand this drop, in Fig. 4, we visualize the gen-
erated images with different α values. We observe that for
values close to the boundaries (0.2 and 0.8), the interpola-
tion is barely visible, with the image mostly gravitating to-
ward the dominant side, making the pretext task noisy. The
images synthesized with values 0.4 and 0.6 are very close
to each other making it harder for the model to distinguish
the exact α used in interpolation. Furthermore, this can also
lead to noisy training if the interpolated images do not ex-
actly reflect the interpolation ratio. We believe this is a lim-
itation of the generative capabilities of the diffusion model
for highly diverse datasets like ImageNet-1K [56]. Hence,
both intuitively and empirically, using α = 0.5 is the opti-
mal solution as the SSL encoder only needs to understand
that the interpolated image is a combination of two other

images rather than finding the exact interpolation value.
Effect of teacher entanglement position: In Tab. 7, we ex-
periment with the entanglement position of teacher outputs
used in the disentanglement pretext task. By default, we
entangle the teacher head logits (after the projection head)
of two source images as per Eq.5. We also explore per-
forming the entanglement after the teacher backbone (be-
fore the projection head) and then passing the entangled
embedding into the teacher head. Tab. 7 indicates that en-
tangling before the projection head leads to a significant de-
crease in performance. This can be attributed to the low-
dimensional teacher backbone output (384 in ViT-S), which
allows less flexibility in feature entanglement within the
low-dimensional space compared to the teacher projection
head output, which is in much higher dimension (typically
65K).

Table 7. Effect of teacher en-
tanglement position.

Method k-nn

Before proj. head 69.6
After proj. head 70.9

Table 8. Comparison of
DINO and Gen-DINO in case
of only global crops.

Method k-NN

DINO 58.6
Gen-DINO wo/ disent. 64.7

Gen-DINO 67.4

Training with Only Global Crops: By default, the DINO
method uses multiple local crops and has shown that they
are necessary to achieve high performance; therefore, for a
fair comparison, we include local crops in our framework
as well. In Tab. 8, we compare DINO and our method,
Gen-DINO, without local crops. We observe that Gen-
DINO performs significantly better, by 8.8%, compared to
DINO. These findings could potentially help improve other
SSL frameworks such as MoCov2 [12] and BYOL [21],
which do not benefit much or may even degrade when
using local crops [6], but may improve with our generative
and interpolated augmentations.

6. Experiments: Histopathology Imaging
So far, we have evaluated Gen-DINO in the natural im-
age domain, pre-training on the object-centric dataset
ImageNet-1K. In this section, we explore its extension to
histopathology, which is non-object-centric and instead in-
volves a complex spatial layout of various tissue structures
and nuclei types [8, 35]. Given the lack of large-scale
text-to-image foundation diffusion models in histopathol-
ogy, self-augmentations using our Gen-SIS framework have
a large potential to improve SSL in this domain.

6.1. Setup
Dataset details: We test our framework on two histopathol-
ogy datasets: PANDA [4] and BRIGHT [3]. The

7



𝛼 = 0 𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.8 𝛼 = 1𝛼 = 0.6

Figure 4. Interpolated augmentations (α = {0.2, 0.4, 0.6, 0.8}) generated from 2 real images (α=0 and α=1). An example of interpolation
between dog and stone image from ImageNet dataset is illustrated.

PANDA dataset comprises approximately 10K prostate can-
cer whole-slide images (WSIs) with ISUP grading (6-class
classification). The WSIs are sourced from two sites:
Karolinska and Radboud. We use the slides from Karolin-
ska for training and the slides from Radboud for evaluation.
The BRIGHT dataset is a breast cancer dataset containing
703 WSIs, divided into 424 for training, 80 for validation,
and 200 for testing. It features a 3-class classification (Non-
cancerous, Pre-cancerous, and Cancerous) task. Due to the
current inactivity of the BRIGHT challenge and the unavail-
ability of test set labels, all results are reported using the
validation set as the test set.

Patch extraction and training: WSIs are of gigapixel size
and, therefore, need to be tiled into multiple crops to fit
within hardware constraints. For the BRIGHT dataset, we
use 10× magnification (1 micron per pixel), and for the
PANDA dataset, we use 20× magnification (0.5 microns
per pixel), extracting crops of size 256 × 256 pixels from
each WSI. This yields 2M and 2.1M crops for the train and
test splits, respectively, for the PANDA dataset, and 1.2M
and 0.2M million crops for the train and test splits, for the
BRIGHT dataset. For both datasets, using the crops from
the corresponding training set, we first pre-train a ViT-S
from scratch with DINO, followed by training an E-LDM
conditioned on this encoder. Finally, we pre-train a Gen-
DINO using our Gen-SIS framework. We pre-train both
DINO and Gen-DINO for 50 epochs on the PANDA dataset
and 100 epochs on BRIGHT, using the same setting as
ImageNet-1K. Following pre-training, we use the frozen en-
coders to extract embeddings for each crop in train-test set
for both datasets. More details are provided in the supple-
mentary.

MIL setting: Since we only have labels for each WSI, not
individual crops, we treat a WSI as a bag of crops. We ap-
ply multiple instance learning (MIL) [32, 34, 36, 38, 53], a
method traditionally used in this context, to pool crop em-
beddings from each WSI and perform WSI-level prediction.
For this task, we use ABMIL [34]. To ensure robustness, we
conduct 5-fold cross-validation on PANDA and report mean
performance on the test set. Since BRIGHT is a relatively
small dataset in terms of the number of WSIs, we train MIL

with 3 random seeds on the complete training set and report
mean performance over the test set. The hyperparameter
details used for MIL are provided in the supplementary.

6.2. Results
As observed in Tab. 9, MIL trained with features extracted
from the Gen-DINO pre-trained encoder consistently out-
performs those from the DINO pre-trained encoder across
both datasets. In the PANDA dataset, our method improves
performance by more than 3% in balanced accuracy. In the
BRIGHT dataset, we observe an improvement of 1.7% in
accuracy. It is important to note that the goal of this exper-
iment is not to compare with the performance of founda-
tional models on histopathology, but rather to enhance the
DINO SSL method, which is a building block of all recent
models in this field [8, 16, 39, 61], with the potential to im-
prove foundational models when Gen-DINO is scaled with
larger datasets.

Table 9. Performance of DINO and Gen-DINO on PANDA (6-
class classification) and BRIGHT (3-class classification) datasets.
For PANDA, we report the mean over 5-fold cross-validation, and
for BRIGHT, we report the mean over three seeds.

Method PANDA BRIGHT
Acc. F1 AUC Acc. F1 AUC

DINO 0.476 0.461 0.817 0.646 0.638 0.820
Gen-DINO 0.508 0.480 0.826 0.663 0.655 0.857

7. Conclusion

We presented Gen-SIS, a self-augmentation technique to
enhance self-supervised learning. Self-augmentations are
generated from a diffusion model that does not rely on
auxiliary information (text or class labels), making our ap-
proach a self-contained one. Our enhanced DINO (Gen-
DINO) trained with Gen-SIS framework using generative
augmentations, and interpolated augmentation along with
the disentanglement pretext task outperforms the vanilla
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DINO in tasks such as image classification and nearest
neighbor retrieval. More importantly, Gen-SIS pretraining
enhances the self-supervised ViT’s capability to explicitly
represent semantic layout, as empirically proven through
the video segmentation task. We showed that the disentan-
glement pretext task was the key contributor in enhancing
this capability. We further extended our framework to non-
object-centric histopathology images, showing consistent
improvement across complex cancer grading tasks com-
pared to DINO. Future work will explore novel approaches
for flexible interpolation augmentation, including potential
policies for selecting which image pairs to interpolate.
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Gen-SIS: Generative Self-augmentation Improves Self-supervised Learning

Supplementary Material

The supplementary is organized as follows:
• Robustness evaluation (section 9)
• Comparison with pixel disentanglement (section 10)
• Implementation details (section 11)

9. Robustness evaluation

To evaluate the robustness of Gen-DINO, we benchmark its performance on three challenging datasets: ImageNet-A (Im-
A) [27], ImageNet-R (Im-R) [26], and ImageNet-Sketch (Im-S) [57]. These datasets test the model’s resilience to out-
of-distribution (OOD) variations. Im-A includes 7,500 adversarially filtered images across 200 classes of ImageNet. Im-
R contains 30,000 images of renditions that are different from standard images from 200 classes of ImageNet. Sketch
contains 50,000 black-and-white sketch images from all ImageNet classes. We directly evaluate the linear classifier trained
on ImageNet-1K on these datasets. As shown in Tab. 10, Gen-DINO demonstrates improvements over the baseline on two
robustness benchmarks. It achieves a substantial accuracy improvement on Im-R, increasing from 33.25 to 37.98, and a decent
improvement on Sketch, rising from 61.93 to 62.3. These results suggest that the generative and interpolated augmentations
in Gen-SIS enhance the model’s ability to handle OOD images. Gen-DINO learns to encode more robust features, better
capturing important characteristics of the images even under distribution shifts.

Table 10. Robustness. We evaluate the linear classifier trained on ImageNet-1K. Gen-DINO shows notable improvements on ImageNet-R
(Im-R) and Sketch (Im-S), indicating an enhanced ability to generalize to diverse image variations.

Method Epochs Im-A Im-R Im-S

DINO 100 9.24 33.25 61.93
Gen-DINO 100 9.24 37.98 62.30

10. Comparison with pixel disentanglement

An important question to address is whether a generative model is the optimal way to interpolate between images, or if sim-
pler techniques, such as pixel-level interpolation, could achieve similar results. To investigate this, we perform an ablation
comparing Gen-SIS’s interpolated augmentations, performed in the conditioning space of E-LDM, against pixel-level inter-
polation of real images. In this regard, we train DINO with the same disentanglement pretext task (as proposed in Eq.7 of
the main text) but replace embedding space interpolation with pixel-level interpolation. We refer to this model as “DINO w/
pixel disent.”

As shown in Tab. 11, DINO w/ pixel disent. significantly underperforms Gen-DINO by 3.0% in terms of k−NN evaluation.
This performance gap highlights the importance of interpolated augmentations in Gen-SIS, performed through E-LDM’s
conditioning space (embedding space). Interestingly, DINO w/ pixel disent. improves linear probing accuracy over vanilla
DINO by 0.59% and achieves comparable performance to Gen-DINO in this metric. Improvement in linear probing of 0.4 %
over DINO has also been observed by a previous work [47] that integrates interpolating real images in pixel space into DINO
training. However, as noted by the authors of DINO, linear probing results are highly sensitive to hyperparameter tuning.
Consequently, we prioritize k-NN evaluation as a more reliable metric. k-NN evaluation is training-free and provides a
direct measure of the quality of learned representations, as its performance correlates with other downstream tasks like image
retrieval and copy detection, which rely on nearest-neighbor comparisons in embedding space. The authors of DINOv2 [40]
also emphasize using k−NN over linear probing to ablate key design choices.

In Fig. 5, we visualize the interpolated augmentation under the Gen-SIS framework versus pixel-level interpolation. In
Gen-SIS, the E-LDM blends the pencil (Image 1) and grasshopper (Image 2) to form a new object whose shape is similar to
pencils, but color and texture follow the grasshopper. In pixel-level interpolation, the resulting textures and shapes are very
different from the ones seen in the training images; (i) the edges are less prominent, due to the misaligned blending of the two
images, and (ii) the textures are ‘unnatural’ with mixtures of colors between the two images creating faded textures. Overall,
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we posit that the E-LDM tries to synthesize an image with objects formed from coherent blending of features from source
image objects instead of the abruptly blended samples that pixel-level interpolation produces.

Table 11. Top-1% accuracy on ImageNet-1K using DINO, DINO w/ pixel disent., and Gen-DINO. We report k-NN and linear probing
(LP) evaluation.

Method Epochs k-NN LP

DINO 100 69.4 73.97
DINO w/ pixel disent. 100 67.9 74.56

Gen-DINO 100 70.9 74.49

Image 1 Image 2 Ours Pixel
Interpolated Augmentation

Figure 5. Interpolated augmentation using Gen-SIS framework (Ours) vs pixel-level interpolation. Image 1 and Image 2 are the source
images used for interpolation (α = 0.5).

11. Implementation details
11.1. Generation of self-augmentations
For ImageNet-1K, we synthesize four generative augmentations for each real image and save them to disk. We sample a
random synthetic image out of four when training Gen-DINO. Fig. 6 shows sample synthetic image generation by E-LDM
when using embedding from a single real image as conditioning. Synthetic images generated from E-LDM contain variations
in orientation, object shape, and background compared to real images. In the case of interpolated augmentation, for each real
primary image in the dataset, we pick a random secondary real image out of the whole dataset and perform the interpolated
augmentation. We create a single interpolated augmentation for each primary image and interpolation ratio (α), and then read
the interpolated augmentation from the disk when training. Fig. 10 presents the interpolated augmentation with various α
values. We use α=0.0 and α=1.0 to represent the two real images used as sources for interpolated augmentation. Interpolated
augmentations blend the shape, texture, and color of the objects visible in the two source images to form new, blended objects.
As seen in Fig. 10, a key observation is that for α=0.2 and α=0.8 interpolated images are very similar to the closest source
image and contain negligible components from the other end. Following the ablation in Tab.6 (in main text), we use α=0.5 in
the training of Gen-DINO. For both generative and interpolated augmentation, we use classifier-free guidance of 6 with 50
DDIM steps.

In the case of histopathology (PANDA and BRIGHT datasets), we follow a similar setup as ImageNet-1K, and synthesize
one generative augmentation and one interpolated augmentation for each image. Fig. 7 and Fig. 8 present generative aug-
mentations, i.e., sample synthetic images generated using real images as source. In generative augmentation, the synthetic
image varies in terms of the position and orientation of cells and tissue compared to the real source image. In the case of
interpolation augmentation, for each real primary image (crop) in the dataset, we pick a random secondary real image (crop)
from a different whole slide image and perform the interpolated augmentation. We create a single interpolated image for
each primary image and given interpolation ratio (α) and read the interpolated image from the disk when training. Fig. 11
and Fig. 12 showcase the interpolated augmentations in PANDA and BRIGHT datasets, respectively. Unlike ImageNet, we
observe that even α=0.2 and α=0.8 interpolated images contain some components from lower-weighted source images. Fol-
lowing this observation, we sample a random alpha from {0.2, 0.4, 0.6, 0.8} for the interpolated augmentation during the
training of Gen-DINO. For both generative and interpolated augmentation, we use a guidance weight of 1.75 with 50 DDIM
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Real Synthetic Real Synthetic

Figure 6. Generative Augmentation on ImageNet-1K using E-LDM by conditioning it on a single real image’s embedding. Real: denotes
the real image in the dataset, Synthetic: denotes the generative augmentation.

steps following the recent works [19, 59] on diffusion models in histopathology. We also present sample synthetic breast
cancer images generated from Stable diffusion with text prompts in Fig 9. The images are highly inaccurate to be used in
training. This reinforces our key design choice of using E-LDM for augmentations.

11.2. Pseudo code for disentanglement pretext task

Algorithm 1 presents the pseudo-code for the disentanglement pretext task. We only use global crops for this pretext task.
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Real Synthetic Real Synthetic

Figure 7. Generative Augmentation on PANDA using E-LDM by conditioning it on a single real image’s embedding. Real: denotes the
real image in the dataset, Synthetic: denotes the generative augmentation.

Real Synthetic Real Synthetic

Figure 8. Generative Augmentation on BRIGHT using E-LDM by conditioning it on single real image’s embedding. Real: denotes the real
image in the dataset, Synthetic: denotes the generative augmentation.
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prompt = "a digital histopathology image showing cancerous breast tissue"

Stable Diffusion 2.1

Figure 9. Breast cancer synthetic histopathology image generation using Stable Diffusion with text prompt as conditioning. The images
generated do not resemble real breast cancer images that are found in typical datasets like BRIGHT (Fig 8).

Algorithm 1: PyTorch-style pseudo-code for disentanglement pretext task
# Input image: img 1
# gs, gt: student and teacher networks
# tps, tpt: student and teacher temperatures
# c: center
# alpha: interpolation ratio
for img 1 in loader

# Read secondary source image
img 2 = ReadImage(secondary(img 1))
# Read interpolated image of primary and secondary source image
img int = ReadInterpImage(img 1, img 2, alpha)
# Apply vanilla dino augmentation to form a view of interpolation
img int view = vanilla augment(img int)
# Apply vanilla dino augmentation to form a view of primary
img 1 view = vanilla augment(img 1)
# Apply vanilla dino augmentation to form a view of secondary
img 2 view = vanilla augment(img 2)
# Get student output for interpolated image and teacher output for image 1 and image 2
stud int = gs(img int view)
teach 1 = gt(img 1 view).detach()
teach 2 = gt(img 2 view).detach()
# Student sharpening
stud int = softmax(stud int / tps, dim=1)
# Entanglement of teacher output
teach ent = alpha * teach 1 + (1-alpha) * teach 2
# Teacher sharpening and centering
teach ent = softmax((teach ent - c) / tpt, dim=1)
# Compute disentanglement loss
disentanglement loss = - (teach ent * log(stud int)).sum(dim=1).mean()

11.3. Evaluation details
ImageNet: We employ standard protocols as used in DINO [6], such as the training-free k-nearest neighbor classifier (k-NN)
and the learning of a linear classifier, both applied to frozen features. For k-NN evaluation, we extract the features from the
training data using the frozen pre-trained encoder. Next, the k-NN classifier compares the features of an image to the k
nearest stored features and assigns a label. We explore various numbers of nearest neighbors and determine that 10-NN or
20-NN consistently yields the best results. In linear evaluation, random resize cropping and horizontal flip augmentation
are applied during training, and test performance is reported on a central crop. We follow the same hyperparameter setup
as DINO [6]. We perform a learning rate hyperparameter search to find the optimal choice. As highlighted in the DINO
paper, linear probing is sensitive to hyperparameter variations, and we similarly observe a substantial variance in accuracy
across learning rate. Therefore, in our study, we consider k-NN as a preferable choice for evaluation, given its robustness to
challenges like hyperparameter tuning.
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Histopathology: We employ multiple instance learning (MIL) to aggregate the frozen features of crops from a whole slide
image, followed by a linear classifier applied to the pooled features. For our MIL framework, we utilize ABMIL [34]. The
model is trained for 50 epochs using the AdamW optimizer with a learning rate of 0.0001 and a weight decay of 0.01. Given
that whole slide images can contain varying numbers of crops, we use a batch size of 1 and accumulate gradients over 8 steps,
achieving an effective batch size of 8.
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=0.0 =0.2 =0.4 =0.5 =0.6 =0.8 =1.0

Figure 10. Interpolated augmentations at various interpolating ratios on ImageNet-1K. α=0.0 and α=1.0 denote the two real images used
as sources for interpolation. We interpolate the embeddings of the two source images, and then condition the E-LDM using the interpolated
embedding to synthesize interpolated augmentations.
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=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

(a) : This image shows the transition between normal prostate stroma (α=0.0) and low-grade prostate (α=1.0) cancer. α=0.0 shows an image of prostate stroma. 

α=0.2 shows a partial gland in the lower right corner. α=0.4 shows a gland that can easily be identified as cancer. The gland lacks a basal cell layer, it has a sharp 

luminal border and the lumen is filled with secretions. More glands are visible in α=0.8, all of them meeting the morphological criteria of low-grade cancer.

(b) : This image shows the transition between a vascular structure in the stroma surrounded by fibroblasts, myofibroblasts and smooth muscle cells and another 
stromal patch that consists almost entirely of perpendicularly sectioned smooth muscle fibers.

(c) : This image shows the transition of a large benign gland to a tile with prostate stroma. The amount of benign epithelium diminishes gradually.

(d) : This image shows the transition of a loose extracellular matrix containing a few fibroblasts to a dense cellular stroma with fragments of benign glands. The 
most apparent fragment of a gland appears in α=0.6.

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

Figure 11. Interpolated augmentations at various interpolating ratios on PANDA. α=0.0 and α=1.0 denote the two real images used as
sources for interpolation. We interpolate the embeddings of the two source images, and then condition the E-LDM using the interpolated
embedding to synthesize interpolated augmentations. The captions below each row represent the description of interpolation annotated by
a pathologist.
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(a) : This image shows the transition of a patch containing well-demarcated epithelial glands with adjacent acellular stroma to a patch with cellular, inflamed 

stroma surrounding small glandular structures.

(b) : This image shows a transition between a patch with a glandular epithelial structure and a patch of acellular stroma with only a few morphological details.

(c) : This image shows the transition between a patch that contains stroma and adipose tissue and a patch with a vascular structure.

(d) : This image shows the transition between a patch with closely spaced epithelial glandular structures and a patch showing a few small glands embedded in an 

inflamed stroma. α=0.6 and 0.8 show a few lymphocytes in the stroma. The arrangement and morphology of the glands raise the possibility of cancer.

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

=0.0 =0.2 =0.4 =0.6 =0.8 =1.0

Figure 12. Interpolated augmentations at various interpolating ratios on BRIGHT. α=0.0 and α=1.0 denote the two real images used as
sources for interpolation. We interpolate the embeddings of the two source images, and then condition the E-LDM using the interpolated
embedding to synthesize interpolated augmentations. The captions below each row represent the description of interpolation annotated by
a pathologist.
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